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Abstract. AI-powered quality assurance solutions are gaining momentum in the steel 

industry under the Industry 4.0 paradigm. In rolling mills, knowing the real-time 

location of billets, i.e. fast moving bars of hot steel, is important in order to guarantee 

a safe process and defect-free end products. To achieve this aim, we present a deep 

learning-based detection of these billets in rolling mills using synthetically generated 

training data. A core practical challenge for many deep learning projects is the limited 

availability of appropriate, annotated training data. We propose a method for 

simulating images employing a partial digital twin of the rolling process. Partial 

models governing the shape and location of the billets, the layout of the rolling mill 

floor, the camera settings, and the lighting situation changing over time are combined 

into a scenario model. Choosing different parametrizations of this scenario model 

facilitates synthesizing a broad range of images for training. The resulting deep 

learning model is utilised to detect billets in real-world images from an actual rolling 

mill. We describe the creation of the partial models using aerial photogrammetry, 

expert knowledge, and 3D modelling, as well as the choice of the deep learning model. 

An evaluation of the model's performance on real-word images shows the 

applicability of our synthetic training data approach. 

1. Introduction 

As a result of automation and demands for increased productivity, reduced human 

intervention, and improved workplace safety, today’s industries are placing considerable 

emphasis on process inspection and quality control. In the context of steel production, a 

challenging problem is the tracking of individual billets in the rolling mill, providing linkage 

between sensor data on individual billets collected before and after the non-continuous 

blooming train. Before entering a heating furnace, each billet is tagged by an imprinted billet 

ID, which is destroyed during the rolling process, making it impossible to identify it at the 

end of the rolling process. Due to harsh production conditions in the steel mill, technologies 

such as RFID sensors are also unsuitable for the tracking task. A computer vision-based 

tracking system provides an alternative, as cameras can be placed at a distance to the field of 

observation, protecting them from damage. The available data for the tracking system 

consists of video streams from three Full HD cameras placed at the entrance, in the middle, 

and at the exit of the blooming train. A schematic illustration of the site as well as captured 

images from the three cameras are depicted in Figure 1 and Figure 2. 

Due to the complexity of the task of tracking billets over multiple camera views, in 

this paper we focus on the initial tracking step: detecting individual billets in the scenery. 

State-of-the-art object detection methods mostly use deep learning technology.  The strength 
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of the approach lies in the ability to learn rich representations as well as to automatically 

extract relevant features from the training data. However, one of the main obstacles using 

deep supervised learning for computer vision-based inspection is the shortage of annotated 

training data. Training data captured from physical processes does have data distributions 

that follow the physics of the underlying process. For stablished production processes, 

accidents and defects happen rarely if at all. Consequently, the most relevant cases are 

drastically underrepresented in training data captured in the real world. An encouraging 

solution is to generate labeled training data using an image data simulator [1]. High-fidelity 

simulations enable training and testing deep learning algorithms more effectively, leading to 

more robust and adaptive networks. Models are able to gain considerably more experience 

in the photorealistic virtual world than in the real environment. It is not only possible to 

simulate rare events that pose challenging situations, e.g. appearance of abnormalities in 

industrial processes, but also to generate broadly distributed variations in a data set, enabling 

the model to better generalize in cases of unseen data.  

In this paper, we evaluate the impact of utilising simulated data for billet detection in 

a rolling mill. After reviewing data simulation strategies, we present a simulation pipeline 

for creating training data of extensive variance. We begin by demonstrating the transfer of a 

real blooming train to its digital counterpart and populating it with billet models.  Then we 

explain how the rendering process is automated. At the end we choose a deep learning model 

to check the quality of the rendered data.  

 
Figure 1 Schematic illustration of a blooming train with billets and three cameras. Image courtesy of 

Saarstahl AG. 

 
Figure 2 Captured images from blooming train cameras. 
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2. Related Work and State of the Art 

The use of simulated data has been extensively explored in various domains of computer 

vision [2], [3]. A systematic approach to the idea was proposed in [4]  and is mostly followed 

in this study. Due to the data-intensive nature of deep convolutional neural networks, 

simulations are frequently employed for tasks where human annotation of the data is either 

difficult or expensive.  Simulated data not only makes data labeling more cost effective, but 

also permits learning theoretical cases for which no real data exists. 

One problem when working with simulated image data is the domain gap issue [5], 

where models trained on simulated data cannot generalize well to real data. This is due to 

difficulties to include all factors in image simulators. 

There are three techniques to help surpass this obstacle: improved photorealism, 

synthetic domain randomisation, and domain adaptation. Improved photorealism is essential 

for training strong detectors. To produce computer-generated images with a high level of 

visual realism, one must focus on modeling a scene with great attention to geometry, textures, 

lightning conditions, as well as accurate simulation of camera lenses and their image 

formation. [6] and [7] demonstrated benefits using photorealistic rendering for training 

region-proposal-based object detectors.  

Domain randomization is one of the most promising techniques to make transfer 

learning from the synthetic image domain to the real image domain work. The basic idea of 

domain randomization is to generate synthetic data diverse enough to train robust models 

that operate efficiently on real data. In computer vision, there are various ways to randomize 

synthetic images: While domain randomization intentionally avoids photorealism and opts 

for a variety in synthetic images [5], [1], structured domain randomisation procedurally 

generates synthetic random images preserving the structures and context of the problem 

domain [8], [9]. Instead of employing ‘blind’ domain randomization, [10] and [11] explore 

how to choose the best possible parameters for guided domain randomization. 

Domain adaptation strategies endeavor to make a model trained in a synthetic domain 

perform effectively in a real domain. These strategies can be divided into two main groups: 

The first group works with the synthetic data itself, trying to ’refine’ it to the real domain by 

making the ‘fake’ data more realistic [12], [13]. A few studies, however, have demonstrated 

that synthetic images may work better if they look less realistic, resulting in better model 

generalization. The methods from the second group operate directly at the feature and model 

level [14], [15]. These methods perform a synthetic-to-real domain adaptation, although they 

do not necessarily result in more realistic synthetic data. 

3. Methods 

3.1 Synthetic Training Image Generation 

By creating virtual environments, we are able to generate training data in a controllable way, 

avoiding collecting and annotating real world data [16], [17], [18]. The major investment in 

labour time occurs at the beginning of the configuration process, when all visual assets of 

modelled scenery must be configured. Once the simulated environment is set, a render engine 

is used to generate labeled data with randomized scenario parameters. Parameter 

randomization is essential for introducing variations into the generated training data. After a 

certain amount of rendered images, one validates the already rendered data using a deep 

learning model and real data. In case the rendered data exhibits unacceptable domain gap, it 

might become necessary to adapt the models.   
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3.2 Environment Generation 

In this study, we model the bare environment based on the real blooming train setting, to 

represent static obstacles in the scenery such as rollers and control booths. A 3D model of 

the blooming train is computed by close-range photogrammetry [19]. High-resolution photos 

of the rolling street were captured using a Canon EOS 5D at 12.8 Megapixel resolution and 

converted to a 3D reconstruction using the commercial software Agisoft Metashape. This 3D 

model replicates the real environment in roughly correct dimensional proportions (Figure 3).  

After the model of the blooming train was cleared of unnecessary objects and 

prepared for further use, three virtual cameras were placed in it at locations predetermined 

by the position of the actual cameras. To make the generated dataset robust to slight changes 

in camera position, we varied the camera rotation and coordinates within a range of a few 

degrees and centimetres. We also applied a wide-angle lens distortion to reflect real images. 

The 3D setting was composed with original camera shots taken during production 

downtime. Hourly photos of the idling rolling mill captured over two weeks convey a wide 

range of changes in lightning conditions. Additionally, we considered using 3D renderings 

of the photogrammetry mesh as background but discarded the approach as the texturing and 

postprocessing of the photogrammetry mesh constituted in infeasible effort. These 

difficulties are a result of the extreme amount of geometric detail in the milling plant and are 

likely surpassable for simpler scenarios.  

3.3 Billet Generation 

The billets detected in this study are thin elongated hot steel bars whose thickness decreases 

and length increases during the rolling process. Billets are not always rigidly straight, they 

can be bent and deformed as they are moved or rolled. If a billet is deformed only slightly, it 

can be straightened in the following rolling rounds. In case of severe deformation, the billet 

is removed from the blooming train and recycled. The color and luminance of billets change 

as they cool down. Furthermore, the billet’s apparent color is liable to change as a result of 

daytime-dependent lighting changes and resulting automatic adjustments in-camera, as well 

as optically inherent defects, such as chromatic aberrations.  

An important part of modelling billets is to decide which shape representation to use. 

We assume that the billet shape has the form of circle or square extruded along a curved 

profile defined by a B-spline. In our virtual environment, the simulated material of a billet 

consists of two components. The first component, the material color channel, is the color of 

the billet itself. In this study, we are focusing on detecting only hot billets. Exiting directly 

out of the furnace and during the rolling process, such hot billets are recorded by the camera 

in an oversaturated white color. The second component, the luminance channel, is affected 

by extraneous factors. As noted previously, while the physical luminance of the actual hot 

billets remains unchanged, the perceived luminance level and tint in-camera depend on the 

surrounding conditions like day and night illumination and individual camera properties and 

settings. Therefore, we randomize the shader’s luminance tint between pink and purple in the 

hue channel of the HSV color space.  

For each scenario, three to seven billets are instantiated and randomly positioned on 

the floor of the mill model. To ensure that there is no unrealistic overlap between the billets 

and the rest of the environment, they are placed in a predefined masked area of the blooming 

train. The density of billets on the floor is also randomized so that the billets can lie very 

close to each other, as in real-world scenarios, Figure 4.  
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3.4 Rendering Pipeline Automation 

Training data was generated by randomizing environmental and billet parameters for every 

frame. The parameters characterizing the environment are the number of billets in the 

scenery, the camera position, the camera rotation, and the background image. Billets in turn 

are described by their length, thickness, degree of deformation, color, luminance, and 

position in the mill. JSON files with extensible schema are employed to programmatically 

write and read randomized scenario parameters. Based on this set of input parameters, the 

image simulator compiles a 3D scene and renders it in three camera views. 

We additionally considered rendering entire animations. The approach was discarded 

because from the point of view of training set composition, having several very similar 

frames is inferior to a more random data distribution. 

The process of populating the dataset with new images happens on-demand. The main 

limiting factor of adding new images is the time needed to render each image. On average, 

one minute is needed to render an image of size 1920x1080 with a corresponding ground-

truth billet instance mask on Nvidia Tesla V100S with 32 GB RAM. Samples of rendered 

images are presented in Figure 5. This kind of synthetic images with corresponding masks is 

employed to train an object detection network. 

3.5 Billet Detection with Deep Learning 

In this study, we evaluate synthetic training data for billet detection in real-world videos. As 

a billet detector we chose a well-developed Faster R-CNN architecture consisting of two 

networks:  a region proposal network to generate region proposals and a network using these 

proposals to detect objects. The method requires image annotations to be dictionaries with 

bounding box coordinates and object labels. These annotations are automatically generated 

from rendered billet instance masks. We discarded such billet instances from annotating if 

the area of their bounding boxes was less then 100 pixels, since Faster-RCNN is known to 

encounter difficulties detecting very small objects [20]. 

 

 
Figure 3 A 3D model of the Saarstahl blooming train, reconstructed photogrammetrically. 

 
Figure 4 Left: A 3D model of the Saarstahl blooming train with inserted 3D billet models. Middle: A 3D 

setting composed with original camera footage. Right: Billet instance segmentation masks with false color 

IDs. 



6 

 
Figure 5 Examples of synthetic images generated automatically with the proposed approach. 

4. Experiments  

Using the approach discussed above, we generated a randomized synthetic dataset containing 

approximately 30,000 images with instance segmentation masks for each camera view. We 

trained deep learning networks using only the generated data. As computing infrastructure, 

we utilized a server with Ubuntu 18.04 with one Nvidia Tesla V100S with 32 GB VRAM. 

We used the PyTorch implementation of the Faster R-CNN [21] architecture with the 

ResNet50 [22] backbone pre-trained on the COCO dataset [23]. To adapt the pretrained 

network to our target domain, we performed transfer learning by replacing the pretrained 

network head by a layer with two classes: background class and billet class. The SGD 

optimizer is used with a learning rate of 0.005, momentum of 0.9, and weight decay of 

0.0005, with minibatch size of 4 images, and training run for a maximum of 20 epochs. Input 

image size is set to 1920x1080 pixels in all experiments. The synthetic dataset is split into 

80% for training and 20% for validation. 323 labeled real images were used as a test set for 

the evaluation of the synthetic data and model quality.  

Experiments were performed on training datasets with different numbers of simulated 

images (with 1.000, 5.000, 10.000, 30.000). Each of the four models is subsequently 

evaluated on the real data. Figure 6 shows the bounding box detection average precision (AP) 

and losses over 20 epochs on the synthetic validation dataset. Table 1 lists the IoU metric for 

billet bounding box detection on real test images. Detection AP, losses, and IoU are shown 

for the second camera view. In all four categories, training on 30.000 synthetic images leads 

to the best result. Figure 6 indicates that increasing the synthetic dataset from 1.000 to 5.000 

images improves training by a large margin, while increasing the dataset from 10.000 to 

30.000 images improves training only slightly. This stagnation of improvements can be 

explained by the fact that synthetic validation sets do not differ a lot between 10.000 and 

30.000 datasets. However, Table 1 shows clear improvement in the training between 10.000 

and 30.000 datasets on real test images.  
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Figure 6 Bounding box detection average precision and losses on the synthetic validation set over training 

epochs. 

Table 1 Performance results of IoU of each model on the real dataset after 20 epochs. 

Number of images in synthetic training dataset IoU 

1.000 0.676 

5.000 0.704 

10.000 0.701 

30.000 0.744 

5. Evaluation 

Once trained on simulated images, Faster-RCNN is presented with real-world images from 

the billet rolling process and tasked to detect billets in the scenery. Example detection results 

for three camera views are provided in Figure 7. It is obvious that Faster-RCNN is effective 

for finding the location of billets in images. Even if simulations are hardly realistic for a 

human observer, their learnable features are still good enough to be transferred to the real 

image domain. The high detection threshold of 0.9 confirms this statement. 

 
Figure 7: Billet detection in real images 
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In camera 3, however, we observe misdetections in case the billets lie in close 

proximity to each other. Due to the horizontal anchors of Faster-RCNN and extremely long 

and thin shape of the steel bars, the billets receive one bounding box. The problem with 

rotated objects can be solved by using oriented proposals [24], [25]. In our use case, there is 

only one angle of billet rotation in the scenery, so we managed to escape the predicament by 

re-training Faster-RCNN with rotated simulated images, see Figure 7 bottom right. 

6. Conclusion 

Here, we introduced a pipeline for synthesizing images of a rolling mill and proved that deep 

learning models trained solely on synthetic data do learn distinctive features for billet 

detection. Presenting the simulation pipeline was the primary emphasis of our paper, while 

tuning the detection model was not given high priority.  

Together with our previous work [26], [27], the demonstrated pipeline advances us 

another step closer to creating a versatile toolkit with various software components to 

generate synthetic training data for industrial processes where real world data is not available 

or annotation constitutes an infeasible effort. A disadvantage of the approach is that each new 

problem requires modeling a virtual scenario environment before the data can be rendered, 

which might take a significant amount of time, depending on the complexity of a scenery. 

This motivates additional computer graphics research on the automatic or semi-automatic 

generation of parametric generative models. 

While our current work has focused on the task of billet detection, a future step should 

be in the direction of billet tracking, which may raise new problems related to the availability 

of training data. If so, we believe that the presented methodology can be transferred to the 

task of synthesizing training data for billet tracking.  
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