

International Conference on NDE 4.0 – 2022

 1
License: https://creativecommons.org/licenses/by/4.0/

Synthetic Training Data Generation for Deep

Learning-Based Billet Detection in Rolling Mills

Maria LUSCHKOVA 1, Christian SCHORR 1,2, Tim DAHMEN 1
1 German Research Center for Artificial Intelligence, Saarbrücken, Germany

2 University of Applied Sciences Kaiserslautern, Zweibrücken, Germany

Contact e-mail: christian.schorr@dfki.de

Abstract. AI-powered quality assurance solutions are gaining momentum in the steel

industry under the Industry 4.0 paradigm. In rolling mills, knowing the real-time

location of billets, i.e. fast moving bars of hot steel, is important in order to guarantee

a safe process and defect-free end products. To achieve this aim, we present a deep

learning-based detection of these billets in rolling mills using synthetically generated

training data. A core practical challenge for many deep learning projects is the limited

availability of appropriate, annotated training data. We propose a method for

simulating images employing a partial digital twin of the rolling process. Partial

models governing the shape and location of the billets, the layout of the rolling mill

floor, the camera settings, and the lighting situation changing over time are combined

into a scenario model. Choosing different parametrizations of this scenario model

facilitates synthesizing a broad range of images for training. The resulting deep

learning model is utilised to detect billets in real-world images from an actual rolling

mill. We describe the creation of the partial models using aerial photogrammetry,

expert knowledge, and 3D modelling, as well as the choice of the deep learning model.

An evaluation of the model's performance on real-word images shows the

applicability of our synthetic training data approach.

1. Introduction

As a result of automation and demands for increased productivity, reduced human

intervention, and improved workplace safety, today’s industries are placing considerable

emphasis on process inspection and quality control. In the context of steel production, a

challenging problem is the tracking of individual billets in the rolling mill, providing linkage

between sensor data on individual billets collected before and after the non-continuous

blooming train. Before entering a heating furnace, each billet is tagged by an imprinted billet

ID, which is destroyed during the rolling process, making it impossible to identify it at the

end of the rolling process. Due to harsh production conditions in the steel mill, technologies

such as RFID sensors are also unsuitable for the tracking task. A computer vision-based

tracking system provides an alternative, as cameras can be placed at a distance to the field of

observation, protecting them from damage. The available data for the tracking system

consists of video streams from three Full HD cameras placed at the entrance, in the middle,

and at the exit of the blooming train. A schematic illustration of the site as well as captured

images from the three cameras are depicted in Figure 1 and Figure 2.

Due to the complexity of the task of tracking billets over multiple camera views, in

this paper we focus on the initial tracking step: detecting individual billets in the scenery.

State-of-the-art object detection methods mostly use deep learning technology. The strength

https://creativecommons.org/licenses/by/4.0/

2

of the approach lies in the ability to learn rich representations as well as to automatically

extract relevant features from the training data. However, one of the main obstacles using

deep supervised learning for computer vision-based inspection is the shortage of annotated

training data. Training data captured from physical processes does have data distributions

that follow the physics of the underlying process. For stablished production processes,

accidents and defects happen rarely if at all. Consequently, the most relevant cases are

drastically underrepresented in training data captured in the real world. An encouraging

solution is to generate labeled training data using an image data simulator [1]. High-fidelity

simulations enable training and testing deep learning algorithms more effectively, leading to

more robust and adaptive networks. Models are able to gain considerably more experience

in the photorealistic virtual world than in the real environment. It is not only possible to

simulate rare events that pose challenging situations, e.g. appearance of abnormalities in

industrial processes, but also to generate broadly distributed variations in a data set, enabling

the model to better generalize in cases of unseen data.

In this paper, we evaluate the impact of utilising simulated data for billet detection in

a rolling mill. After reviewing data simulation strategies, we present a simulation pipeline

for creating training data of extensive variance. We begin by demonstrating the transfer of a

real blooming train to its digital counterpart and populating it with billet models. Then we

explain how the rendering process is automated. At the end we choose a deep learning model

to check the quality of the rendered data.

Figure 1 Schematic illustration of a blooming train with billets and three cameras. Image courtesy of

Saarstahl AG.

Figure 2 Captured images from blooming train cameras.

3

2. Related Work and State of the Art

The use of simulated data has been extensively explored in various domains of computer

vision [2], [3]. A systematic approach to the idea was proposed in [4] and is mostly followed

in this study. Due to the data-intensive nature of deep convolutional neural networks,

simulations are frequently employed for tasks where human annotation of the data is either

difficult or expensive. Simulated data not only makes data labeling more cost effective, but

also permits learning theoretical cases for which no real data exists.

One problem when working with simulated image data is the domain gap issue [5],

where models trained on simulated data cannot generalize well to real data. This is due to

difficulties to include all factors in image simulators.

There are three techniques to help surpass this obstacle: improved photorealism,

synthetic domain randomisation, and domain adaptation. Improved photorealism is essential

for training strong detectors. To produce computer-generated images with a high level of

visual realism, one must focus on modeling a scene with great attention to geometry, textures,

lightning conditions, as well as accurate simulation of camera lenses and their image

formation. [6] and [7] demonstrated benefits using photorealistic rendering for training

region-proposal-based object detectors.

Domain randomization is one of the most promising techniques to make transfer

learning from the synthetic image domain to the real image domain work. The basic idea of

domain randomization is to generate synthetic data diverse enough to train robust models

that operate efficiently on real data. In computer vision, there are various ways to randomize

synthetic images: While domain randomization intentionally avoids photorealism and opts

for a variety in synthetic images [5], [1], structured domain randomisation procedurally

generates synthetic random images preserving the structures and context of the problem

domain [8], [9]. Instead of employing ‘blind’ domain randomization, [10] and [11] explore

how to choose the best possible parameters for guided domain randomization.

Domain adaptation strategies endeavor to make a model trained in a synthetic domain

perform effectively in a real domain. These strategies can be divided into two main groups:

The first group works with the synthetic data itself, trying to ’refine’ it to the real domain by

making the ‘fake’ data more realistic [12], [13]. A few studies, however, have demonstrated

that synthetic images may work better if they look less realistic, resulting in better model

generalization. The methods from the second group operate directly at the feature and model

level [14], [15]. These methods perform a synthetic-to-real domain adaptation, although they

do not necessarily result in more realistic synthetic data.

3. Methods

3.1 Synthetic Training Image Generation

By creating virtual environments, we are able to generate training data in a controllable way,

avoiding collecting and annotating real world data [16], [17], [18]. The major investment in

labour time occurs at the beginning of the configuration process, when all visual assets of

modelled scenery must be configured. Once the simulated environment is set, a render engine

is used to generate labeled data with randomized scenario parameters. Parameter

randomization is essential for introducing variations into the generated training data. After a

certain amount of rendered images, one validates the already rendered data using a deep

learning model and real data. In case the rendered data exhibits unacceptable domain gap, it

might become necessary to adapt the models.

4

3.2 Environment Generation

In this study, we model the bare environment based on the real blooming train setting, to

represent static obstacles in the scenery such as rollers and control booths. A 3D model of

the blooming train is computed by close-range photogrammetry [19]. High-resolution photos

of the rolling street were captured using a Canon EOS 5D at 12.8 Megapixel resolution and

converted to a 3D reconstruction using the commercial software Agisoft Metashape. This 3D

model replicates the real environment in roughly correct dimensional proportions (Figure 3).

After the model of the blooming train was cleared of unnecessary objects and

prepared for further use, three virtual cameras were placed in it at locations predetermined

by the position of the actual cameras. To make the generated dataset robust to slight changes

in camera position, we varied the camera rotation and coordinates within a range of a few

degrees and centimetres. We also applied a wide-angle lens distortion to reflect real images.

The 3D setting was composed with original camera shots taken during production

downtime. Hourly photos of the idling rolling mill captured over two weeks convey a wide

range of changes in lightning conditions. Additionally, we considered using 3D renderings

of the photogrammetry mesh as background but discarded the approach as the texturing and

postprocessing of the photogrammetry mesh constituted in infeasible effort. These

difficulties are a result of the extreme amount of geometric detail in the milling plant and are

likely surpassable for simpler scenarios.

3.3 Billet Generation

The billets detected in this study are thin elongated hot steel bars whose thickness decreases

and length increases during the rolling process. Billets are not always rigidly straight, they

can be bent and deformed as they are moved or rolled. If a billet is deformed only slightly, it

can be straightened in the following rolling rounds. In case of severe deformation, the billet

is removed from the blooming train and recycled. The color and luminance of billets change

as they cool down. Furthermore, the billet’s apparent color is liable to change as a result of

daytime-dependent lighting changes and resulting automatic adjustments in-camera, as well

as optically inherent defects, such as chromatic aberrations.

An important part of modelling billets is to decide which shape representation to use.

We assume that the billet shape has the form of circle or square extruded along a curved

profile defined by a B-spline. In our virtual environment, the simulated material of a billet

consists of two components. The first component, the material color channel, is the color of

the billet itself. In this study, we are focusing on detecting only hot billets. Exiting directly

out of the furnace and during the rolling process, such hot billets are recorded by the camera

in an oversaturated white color. The second component, the luminance channel, is affected

by extraneous factors. As noted previously, while the physical luminance of the actual hot

billets remains unchanged, the perceived luminance level and tint in-camera depend on the

surrounding conditions like day and night illumination and individual camera properties and

settings. Therefore, we randomize the shader’s luminance tint between pink and purple in the

hue channel of the HSV color space.

For each scenario, three to seven billets are instantiated and randomly positioned on

the floor of the mill model. To ensure that there is no unrealistic overlap between the billets

and the rest of the environment, they are placed in a predefined masked area of the blooming

train. The density of billets on the floor is also randomized so that the billets can lie very

close to each other, as in real-world scenarios, Figure 4.

5

3.4 Rendering Pipeline Automation

Training data was generated by randomizing environmental and billet parameters for every

frame. The parameters characterizing the environment are the number of billets in the

scenery, the camera position, the camera rotation, and the background image. Billets in turn

are described by their length, thickness, degree of deformation, color, luminance, and

position in the mill. JSON files with extensible schema are employed to programmatically

write and read randomized scenario parameters. Based on this set of input parameters, the

image simulator compiles a 3D scene and renders it in three camera views.

We additionally considered rendering entire animations. The approach was discarded

because from the point of view of training set composition, having several very similar

frames is inferior to a more random data distribution.

The process of populating the dataset with new images happens on-demand. The main

limiting factor of adding new images is the time needed to render each image. On average,

one minute is needed to render an image of size 1920x1080 with a corresponding ground-

truth billet instance mask on Nvidia Tesla V100S with 32 GB RAM. Samples of rendered

images are presented in Figure 5. This kind of synthetic images with corresponding masks is

employed to train an object detection network.

3.5 Billet Detection with Deep Learning

In this study, we evaluate synthetic training data for billet detection in real-world videos. As

a billet detector we chose a well-developed Faster R-CNN architecture consisting of two

networks: a region proposal network to generate region proposals and a network using these

proposals to detect objects. The method requires image annotations to be dictionaries with

bounding box coordinates and object labels. These annotations are automatically generated

from rendered billet instance masks. We discarded such billet instances from annotating if

the area of their bounding boxes was less then 100 pixels, since Faster-RCNN is known to

encounter difficulties detecting very small objects [20].

Figure 3 A 3D model of the Saarstahl blooming train, reconstructed photogrammetrically.

Figure 4 Left: A 3D model of the Saarstahl blooming train with inserted 3D billet models. Middle: A 3D

setting composed with original camera footage. Right: Billet instance segmentation masks with false color

IDs.

6

Figure 5 Examples of synthetic images generated automatically with the proposed approach.

4. Experiments

Using the approach discussed above, we generated a randomized synthetic dataset containing

approximately 30,000 images with instance segmentation masks for each camera view. We

trained deep learning networks using only the generated data. As computing infrastructure,

we utilized a server with Ubuntu 18.04 with one Nvidia Tesla V100S with 32 GB VRAM.

We used the PyTorch implementation of the Faster R-CNN [21] architecture with the

ResNet50 [22] backbone pre-trained on the COCO dataset [23]. To adapt the pretrained

network to our target domain, we performed transfer learning by replacing the pretrained

network head by a layer with two classes: background class and billet class. The SGD

optimizer is used with a learning rate of 0.005, momentum of 0.9, and weight decay of

0.0005, with minibatch size of 4 images, and training run for a maximum of 20 epochs. Input

image size is set to 1920x1080 pixels in all experiments. The synthetic dataset is split into

80% for training and 20% for validation. 323 labeled real images were used as a test set for

the evaluation of the synthetic data and model quality.

Experiments were performed on training datasets with different numbers of simulated

images (with 1.000, 5.000, 10.000, 30.000). Each of the four models is subsequently

evaluated on the real data. Figure 6 shows the bounding box detection average precision (AP)

and losses over 20 epochs on the synthetic validation dataset. Table 1 lists the IoU metric for

billet bounding box detection on real test images. Detection AP, losses, and IoU are shown

for the second camera view. In all four categories, training on 30.000 synthetic images leads

to the best result. Figure 6 indicates that increasing the synthetic dataset from 1.000 to 5.000

images improves training by a large margin, while increasing the dataset from 10.000 to

30.000 images improves training only slightly. This stagnation of improvements can be

explained by the fact that synthetic validation sets do not differ a lot between 10.000 and

30.000 datasets. However, Table 1 shows clear improvement in the training between 10.000

and 30.000 datasets on real test images.

7

Figure 6 Bounding box detection average precision and losses on the synthetic validation set over training

epochs.

Table 1 Performance results of IoU of each model on the real dataset after 20 epochs.

Number of images in synthetic training dataset IoU

1.000 0.676

5.000 0.704

10.000 0.701

30.000 0.744

5. Evaluation

Once trained on simulated images, Faster-RCNN is presented with real-world images from

the billet rolling process and tasked to detect billets in the scenery. Example detection results

for three camera views are provided in Figure 7. It is obvious that Faster-RCNN is effective

for finding the location of billets in images. Even if simulations are hardly realistic for a

human observer, their learnable features are still good enough to be transferred to the real

image domain. The high detection threshold of 0.9 confirms this statement.

Figure 7: Billet detection in real images

8

In camera 3, however, we observe misdetections in case the billets lie in close

proximity to each other. Due to the horizontal anchors of Faster-RCNN and extremely long

and thin shape of the steel bars, the billets receive one bounding box. The problem with

rotated objects can be solved by using oriented proposals [24], [25]. In our use case, there is

only one angle of billet rotation in the scenery, so we managed to escape the predicament by

re-training Faster-RCNN with rotated simulated images, see Figure 7 bottom right.

6. Conclusion

Here, we introduced a pipeline for synthesizing images of a rolling mill and proved that deep

learning models trained solely on synthetic data do learn distinctive features for billet

detection. Presenting the simulation pipeline was the primary emphasis of our paper, while

tuning the detection model was not given high priority.

Together with our previous work [26], [27], the demonstrated pipeline advances us

another step closer to creating a versatile toolkit with various software components to

generate synthetic training data for industrial processes where real world data is not available

or annotation constitutes an infeasible effort. A disadvantage of the approach is that each new

problem requires modeling a virtual scenario environment before the data can be rendered,

which might take a significant amount of time, depending on the complexity of a scenery.

This motivates additional computer graphics research on the automatic or semi-automatic

generation of parametric generative models.

While our current work has focused on the task of billet detection, a future step should

be in the direction of billet tracking, which may raise new problems related to the availability

of training data. If so, we believe that the presented methodology can be transferred to the

task of synthesizing training data for billet tracking.

Acknowledgements

This research was funded by the European Union’s Horizon 2020 research and innovation

programme under grant number 870130 (the COGNITWIN project). The authors thank

Saarstahl and Stahl-Holding-Saar (SHS) for their technical support and videos from the

blooming train.

References

[1] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci, S. Boochoon

and S. Birchfield, “Training deep networks with synthetic data: Bridging the reality gap by domain

randomization,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pp. 969-977, 2018.

[2] A. Tsirikoglou, G. Eilertsen and J. Unger, “A survey of image synthesis methods for visual machine

learning,” Computer Graphics Forum, vol. 39 (6), pp. 426-451, 2020.

[3] S. I. Nikolenko, “Synthetic data for deep learning,” arXiv:1909.11512, 2019.

[4] T. Dahmen, P. Trampert, F. Boughorbel, J. Sprenger, M. Klusch, K. Fischer, C. Kübel and P. Slusallek,

“Digital reality: A model-based approach to supervised learning from synthetic data,” AI Perspectives

1, pp. 1-12, 2019.

[5] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba and P. Abbeel, “Domain randomization for

transferring deep neural networks from simulation to the real world,” 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2017), pp. 23-30, 2017.

9

[6] T. Hodan, V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell, P. Urbina, S. N. Sinha and B. Guenter,

“Photorealistic image synthesis for object instance detection,” 2019 IEEE International Conference on

Image Processing (ICIP), pp. 60-70, 2019.

[7] D. Dwibedi, I. Misra and M. Hebert, “Cut, paste and learn: Surprisingly easy synthesis for instance

detection,” Proceedings of the IEEE International Conference on Computer Vision, pp. 1301-1310,

2017.

[8] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira and S. Birchfield,

“Structured domain randomization: bridging the reality gap by context-aware synthetic data,” 2019

International Conference on Robotics and Automation (ICRA), pp. 7249-7255, 2019.

[9] L. Eversberg and J. Lambrecht, “Generating images with physics-based rendering for an industrial

object detection task: Realism versus domain randomization,” Sensors vol. 21(23), 2021.

[10] Q. Vuong, S. Vikram, H. Su, S. Gao and H. I. Christensen, “How to pick the domain randomization

parameters for sim-to-real transfer of reinforcement learning policies?,” ArXiv, abs/1903.11774, 2019.

[11] S. Zakharov, W. Kehl and S. Ilic, “DeceptionNet: network-driven domain randomization,” 2019

IEEE/CVF International Conference on Computer Vision (ICCV), pp. 532-541, 2019.

[12] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang and R. Webb, “Learning from simulated and

unsupervised images through adversarial training,” 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 2242-2251, 2017.

[13] J. Katrolia, L. Krämer, J. Rambach, B. Mirbach and D. Stricker, “An adversarial training based

framework for depth domain adaptation,” Proceedings of the 16th International Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 4: VISAPP, pp. 353-

361, 2021.

[14] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. March and V.

Lempitsky, “Domain-adversarial training of neural networks,” Journal of Machine Learning Research,

pp. 1-35, 2016, vol.17 (59).

[15] G. French, M. Mackiewicz and M. Fisher, “Self-ensembling for visual domain adaptation,”

International Conference on Learning Representations (ICLR), 2018.

[16] S. Borkman, A. Crespi, S. Dhakad, S. Ganguly, J. Hogins, Y.-C. Jhang, M. Kamalzadeh, B. Li, S. Leal,

P. Parisi, C. Romero, W. Smith, A. Thaman and S. Warren, “Unity perception: Generate synthetic data

for computer vision,” arXiv preprint arXiv:2107.04259, 2021.

[17] S. E. Ebadi, Y.-C. Jhang , A. Zook , S. Dhakad , A. Crespi , P. Parisi , S. Borkman , J. Hogins and S.

Ganguly, “PeopleSansPeople: A synthetic data generator for human-centric computer vision,” eprint

arXiv:2112.09290, 2021.

[18] A. Kar, A. Prakash, M.-Y. Liu, E. Cameracci, J. Yuan, M. Rusiniak, D. Acuna, A. Torralba and S.

Fidler, “Meta-Sim: learning to generate synthetic datasets,” 2019 IEEE/CVF International Conference

on Computer Vision (ICCV), pp. 4550-4559, 2019.

[19] F. Remondino, A. Guarnieri and A. Vettore, “3D modeling of close-range objects: Photogrammetry or

laser scanning?,” Proceedings of SPIE-IS&T Electronic Imaging: Videometrics VIII 5665, pp. 216-225,

2004.

[20] C. Eggert, S. Brehm, A. Winschel, . D. Zecha and . R. Lienhart, “A closer look: Small object detection

in faster R-CNN,” 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 421-426,

2017.

[21] S. Ren, K. He, R. B. Girshick and J. Sun, “Faster R-CNN: Towards real-time object detection with

region proposal,” Advances in Neural Information Processing Systems (NIPS), pp. 91-99, 2015.

[22] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

[23] T.-Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, C.

L. Zitnick and P. Dollár, “Microsoft COCO: Common objects in context,” ECCV, 2014.

[24] X. Xie, G. Cheng, J. Wang, X. Yao and J. Han, “Oriented R-CNN for object detection,” Proceedings of

the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3520-3529, 2021.

[25] . L. Zhang, H. Wang, L. Wang, C. Pan, Q. Liu and X. Wang, “Constraint loss for rotated object

detection in remote sensing images,” Remote Sensing, vol. 13, p. 4291, 2021.

[26] P. Gutierrez, M. Luschkova, A. Cordier, M. Shukor, M. Schappert and T. Dahmen, “Synthetic training

data generation for deep learning based quality inspection,” International Conference on Quality

Control by Artificial Vision, 2021.

10

[27] P. Trampert, D. Rubinstein, F. Boughorbel, C. Schlinkmann, M. Luschkova, P. Slusallek, T. Dahmen

and S. Sandfeld, “Deep neural networks for analysis of microscopy images—synthetic data generation

and adaptive sampling,” Crystals, vol. 11(3), 2021.

[28] F. Poucin, A. Kraus and . M. Simon, “Boosting instance segmentation with synthetic data: A study to

overcome the limits of real world data sets,” 2021 IEEE/CVF International Conference on Computer

Vision Workshops (ICCVW), pp. 945-953, 2021.

	1. Introduction
	2. Related Work and State of the Art
	3. Methods
	3.1 Synthetic Training Image Generation
	3.2 Environment Generation
	3.3 Billet Generation
	3.4 Rendering Pipeline Automation
	3.5 Billet Detection with Deep Learning
	4. Experiments

	5. Evaluation
	6. Conclusion
	Acknowledgements
	References

