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A systematic approach to the development of long-term

autonomous robotic systems for agriculture
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Abstract: For robots to compete with conventional machinery in agriculture, improving their long-

term autonomy seems necessary. In this article, we provide concepts and intermediate results of our

work aimed at a long-term autonomous robotic system performing a plant monitoring task. Based

on notions from literature, we introduce a structured approach to defining long-term autonomy and

report on the system we develop that meets this definition in practical experiments. Finally, we

present intermediate results from simulation and discuss further avenues of research.
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1 Introduction

The agricultural domain poses distinctive challenges for robotic systems to act

independently of human supervision over prolonged periods of time due to the typical

farm environment being neither under full control nor fully known to the system at any

point in time. This might be the reason why most available products and prototypes

deployed over long durations fulfill only very basic tasks and often require a controlled

environment. However, as long-term autonomy (LTA) promises to be a cornerstone for

robots competing with conventional machinery in more complex tasks in the future, it

remains a challenge to develop flexible robotic systems for LTA deployment. To enable

systematic improvement and evaluation of LTA capabilities, a sound definition of the

concepts of long-term and autonomy in this context is essential. We reuse the AROX

platform from [Ho20], seen in Figure 1a. Figure 1b shows the test site created in 2022 to

facilitate long-term autonomy experiments by providing agricultural test beds in an

enclosed area. The goal of the system is to accomplish the plant monitoring application

described in [Ti22], i.e., to continuously acquire canola plant data.
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Fig. 1: (a) AROX platform and base station [Ho20] (b) Test plot for canola monitoring

2 Relevant work and definitions

Although work regarding robotic LTA reaches back at least a decade [BKS13], the special

case of LTA in agriculture as an application domain with very specific requirements

[BV16] is gaining traction with many publications in recent years. Kunze et al. describe

technological building blocks for addressing LTA in robotic systems, with work

concerning agriculture focusing on navigation and mapping in changing environments

[Ku18]. The following sections rely on the work described in [Pa22; Bo22].

2.1 What is autonomy?

In practice, robots are not expected to operate in complete isolation, but to act and self-

preserve within the scope of their task without external supervision. Moreover, some

functions of a robot may operate autonomously while others do not, rendering the

integrated robot “partially autonomous”. Figure 2 shows concepts of different degrees of

autonomy, derived from [He15]. For this work, the AROX should be able to operate fully

autonomously for what we call an LTA episode, i.e., a period of time that is plausible in

the context of plant monitoring.

Fig. 2: Spectrum of autonomy
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2.2 How long is long-term?

Likewise, LTA is usually not expected to persist indefinitely, and other authors have

defined varying time spans for their respective applications [Ha17; Ku18; Br18]. While

the hardware and process can be considered static for the scope of our work, the

environment introduces dynamics that occur on various time scales such as hours (day-

night), days (predictable weather changes), weeks (plant growth), seasons (snow, leaf

discoloration), and years (tree growth / removal) posing requirements for the implemented

system. Moreover, robotic hardware constraints introduce a “temporal action radius” by

enforcing interruptions for refueling, data storage clearing, or maintenance. A typical

agricultural process might consist of multiple refueling cycles for single events such as

harvesting, where a robot must return to a power supply station or unload harvested crops

several times. For continuous applications, e.g., weeding or monitoring, such multi-cycle

missions may be repeated and spread over a certain growth period spanning weeks. If other

factors lead to multiple upper bounds, the lowest one defines the limit for an LTA episode.

In our case, we found that the hardware maintenance interval sets a plausible upper bound

of one week for LTA episodes.

2.3 Simplified LTA plant monitoring scenario

To approach the complex problem of LTA in a structured way, the core idea of our

research is to start from a simplified practical scenario that allows to conduct experiments

with a likewise simplified system that nevertheless satisfies the previously given

definition. In earlier work, we described a monitoring application for plant breeding

[Ti20], which is outlined in Figure 3. With a time frame of one week per LTA episode and

a few hours per multi-cycle mission derived from practical experience, we can initially

assume unexpected changes in energy consumption as the only dynamic to consider,

which occurs frequently in practice.

Fig. 3: Multi-cycle mission for plant monitoring [Ti20]
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3 Implementation of the system

In literature, there are overviews of robotic capabilities related to LTA that have been the

subject of extensive research [Ku18; BV16], focusing on motion control, navigation,

mapping, and localization for agricultural scenarios, for which a plethora of established

software modules are available in the ROS ecosystem. For top-level control and plan

execution, a simple state machine was implemented that can handle external interruptions

frommodular health monitoring solutions such as the battery watchdog (cf. sec. 3.2). Since

robustness and verifiability of robotic systems is mentioned in many publications as a

focus of future research, we anticipate this already in the design of the control architecture.

Initially, we consider only energy consumption as an uncontrolled dynamic, so we

concentrate on autonomous energy supply (cf. sec. 3.1) and a battery monitoring system

(cf. sec. 3.2) as a substitute for other monitoring systems to be included in the future.

3.1 Autonomous energy supply

The ability to recharge is crucial for multi-cycle missions. Arvin et al. divide it into three

subproblems: observing the charge level, localization and navigation to the charging

station, and docking [ASR09]. The latter is implemented by a Hough transform based

shape detection of the base station in a continuously updated laser scan (cf. fig. 4), upon

which we compute a goal pose inside that can be adopted using the navigation module. As

a prerequisite, the robot must be in the vicinity of the base station and roughly oriented

towards it.

Fig. 4: (a) Robot facing base station (b) Base station perception based on lidar data (c) Successful

detection of base station shape

3.2 Battery watchdog system

In practice, even with good planning, there is a risk of the robot not reaching the base

station due to battery depletion because of unexpectedly high energy consumption. In this
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work, this is ensured by a real-time battery watchdog system that interrupts current actions

and drives to the base station for recharging when the battery level drops below a safety

threshold, which is the sum of a pre-set value and a dynamically calculated prediction of

how much energy the return to base will consume. This prediction is continuously updated

using the navigation module, which means that improving the navigation planner will also

improve battery management. If the remaining energy is determined to be insufficient to

return to base safely, human assistance is called for by the robot. Naturally, the parameters

for these calculations were optimized for a tradeoff between safety and not having to return

to recharge too frequently.

4 Experiments and evaluation

At the time of writing this article, first successes have been realized in running the

described components on the physical AROX platform, but no integrated runs have yet

been conducted. Therefore, we report on experiments performed using the Gazebo

simulator for ROS systems. When an LTA episode in a physical experiment were to span

a week, this would roughly correspond to 2 to 4 missions repeated on non-consecutive

days, with the time in between waiting in the base station. In simulation, this number of

missions can be reasonably completed in about 5 hours of runtime by skipping idle time.

A single multi-cycle mission is represented as a plan incorporating all the steps of the

simplified scenario, including several planned returns to base for recharging and all the

actions described. Moreover, it covers a variety of situations by navigating to different

locations.

To evaluate the experiments, two metrics were used, namely mission failures and

autonomy percentage based on [Ha17]. The autonomy percentage is the ratio of time spent

performing autonomous tasks to the total runtime; this is expected to be higher than in real

applications, though, as we omit the main waiting times. We define a mission as failed

when a timeout t = 900 s is exceeded without action completion. Also, any occurrence of

a failure signal in the state machine is considered a failed mission, e.g., in case of a

completely discharged battery. The experiment was performed three times with no

failures, at an average of 5.09 hours, 3.67 completed missions, and 106.67 tasks. It

required an average of 9.67 charge cycles, and the average total distance traveled was

1102.68 m. The autonomy percentage was 97.15 % on average. Although three runs do

not guarantee flawless usage of the system, they demonstrate that the expected basic

functionality is achieved in a setup meeting the definition of long-term autonomy.

5 Discussion and future avenues

The experiments show that the introduced definitions can be used for the development and

evaluation of an LTA system. We argue that the choice of a particular time frame for an

LTA episode depends on the combination of robot, application, and domain. In turn, the
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challenges that must be solved for successful integration of such a system depend on the

application and episode length. To narrow down the initial tests, we only considered

energy supply and consumption. However, it can be argued that longer LTA episodes are

of interest for actual productive use, leading to additional dynamics that need to be

addressed in the future, especially along seasonal cycles. These include weather extremes,

harsh ground conditions, lighting changes, obstacles (static / dynamic) blocking the robot's

path, but also less tangible aspects such as perceptual aliasing, which involves recognizing

certain objects or places under altered circumstances, which is far from trivial. In addition,

system dynamics such as connectivity issues that do not necessarily affect the environment

but the robot itself, must be managed adequately to achieve true long-term autonomy. We

plan to integrate the described system into the physical AROX and extend it to enhance

its LTA capabilities. This includes a more general framework for monitoring various

relevant aspects of system health and the ability to deal with broader environmental

dynamics. Additionally, the navigation and mapping modules will be improved to enable

intelligent adaptation of the used planners.

Bibliography

[ASR09] Arvin, F. et al.: Swarm robots long term autonomy using moveable charger. International

Conference on Future Computer and Communication. IEEE, 2009.

[BKS13] Barfoot, T.; Kelly J.; Sibley, G.: Special issue on long-term autonomy. IJRR, 2013.

[Bo22] Bohne, T.: Execution Monitoring for Long-Term Autonomous Plant Observation with

a Mobile Robot, Osnabrück University, 2022.

[Br18] Brommer, C. et al.: Long-Duration Autonomy for Small Rotorcraft UAS Including

Recharging. IEEE International Conference on Intelligent Robots and Systems, 2018.

[BV16] Bechar, A.; Vigneault, C.: Agricultural robots for field operations: Concepts and

components. Bio. Eng., 2016.

[Ha17] Hawes, N. et al.: The STRANDS Project. IEEE Robotics & Automation Magazine,

2017.

[He15] Hertzberg, J.: Technische Gestaltungsoptionen für autonom agierende Komponenten

und Systeme. In: Das Recht vor den Herausforderungen der modernen Technik, 2015.

[Ho20] Hoellmann, M. et al.: Towards Context-Aware Navigation for Long-Term Autonomy in

Agricultural Environments. IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2020.

[Ku18] Kunze, L. et al.: Artificial Intelligence for Long-Term Robot Autonomy: A Survey.

IEEE Robotics and Automation Letters, 2018.

[Pa22] Parthasarathy, G.: Towards Long-Term Autonomous Survivability in Agriculture: A

real-time safety watchdog to ensure the survivability of an outdoor plant monitoring

robot., KTH Royal Institute of Technology, 2022.

[Ti22] Tieben, C. et al.: Erste Schritte zu einem virtuellen Zuchtgarten. 42. GIL-Jahrestagung.

Bonn: Gesellschaft für Informatik e.V. (S. 295-300), 2022.


