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1 | INTRODUCTION
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Abstract

The increasing complexity of low-voltage networks poses a growing challenge for the
reliable and fail-safe operation of electricity grids. The reasons for this include an
increasingly decentralised energy generation (photovoltaic systems, wind power etc.) and
the emergence of new types of consumers (e-mobility, domestic electricity storage etc.).
At the same time, the low-voltage grid is largely unmonitored and local power failures are
sometimes hard to detect. To overcome this, power line communication (PLC) has
emerged as a potential solution for reliable monitoring of the low-voltage grid. In
addition to establishing a communication infrastructure, PL.C also offers the possibility of
evaluating the cables themselves, as well as the connection quality between individual
cable distributors based on their signal-to-noise ratio (SNR). The roll-out of a large-scale
PLC infrastructure therefore not only ensures communication, but also introduces a tool
for monitoring the entire network. To evaluate the potential of this data, we installed 38
PLC modems in three different areas of a German city with a population of about
150,000 as part of the Fiihler-im-Netz (FiN) project. Over a period of 22 months, an
SNR spectrum of each connection between adjacent PLC modems was generated every
quarter of an hour. The availability of this real-world PLC data opens up new possibilities
to react to the increasingly complex challenges in future smart grids. This paper provides
a detailed analysis of the data generation and describes how the data was collected during
normal operation of the electricity grid. In addition, we present common anomalies,
effects, and trends that could be observed in the PLC data at daily, weekly, or seasonal
levels. Finally, we discuss potential use cases and the remote inspection of a cable section
is highlighted as an example.

KEYWORDS
data set, deep learning, IoT, machine learning, power line communication, smart grid

communication (PLC) has proven to be an efficient way to
connect households, cable distributors and grid operators [2, 3].

Despite of the advances in IoT and increasingly cheaper sensory
hardware, low-voltage grids remain largely unmonitored, as this
is uneconomical due to their high complexity [1]. However, the
aspect of comprehensive monitoring has become more impor-
tant due to the growing challenges arising from the transition to
a higher share of renewable energy and more complex energy
consumers. On the way to meet these challenges, power line

By providing such a mesh network, interconnecting all stake-
holders, PLC is a good candidate to back the operation of many
different smart devices like chargers, metres, photovoltaic sys-
tems (PV) etc. Besides this potential as a backbone for smart grid
devices, we want to shed light on another set of applications that
could also be realised by using data from such a PLC network.
While the communication capability of PLC networks is already
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receiving attention in research, the exploration of the benefits of
the data collected in PLC networks remains largely unaddressed.
By attaching sensors to PLC nodes, it is possible to collect a wide
range of different types of data. In this paper, however, we want
to focus on the signal-to-noise ratio (SNR) measured by the PLC
modems during their normal operation and without additional
sensors. One reason why this data is largely unconsidered in
research is not least because data from the practical use of PLC
networks has not yet been sufficiently available to the research
community. In this work, we want to address this shortcoming
by presenting the FiN data set and potential use cases. Within
FiN 38 PLC modems were distributed in three different areas of
a German city with population of about 150,000. Those 38
modems yield 68 1-to-1 connections and collected data over
around two years. During this time every quarter of an hour an
SNR assessment as described in Section 3.4 was performed.
Thus, over 3.7 million data points were collected during the
project period. Along with this SNR data, we publish an
extensive collection of metadata on the cables in the network. To
underline the benefits of the data, we also highlight a number of
different applications.

1.1 | Main contributions

We present the FiN data set holding 3.7 million data points,
where each data point represents the SNR profile of a PLC
connection between two cable distributors in the low- and
mid-voltage grid. Furthermore, we provide metadata on
weather conditions and cable characteristics. All the data was
recorded during the real-life usage of the PLC nodes. The
signal quality is measured by assessing the SNR on 917
channels with different frequencies between 2 and 30 MHz.
The data was collected over a period of 22 months and in-
volves 38 different PLLC nodes inside the cable distributors.
FiIN data set aims on a wide range of different potential
applications:

® Anomaly detection (e.g. discovery of noise sources)

® Grid monitoring (e.g, detection of power outages, local-
isation of cable breaks)

® Asset management (e.g. lifetime estimation of cables, meta
data estimation)

® Additional security layer (e.g. detection of attacks against the
grid infrastructure, manipulations)

® Misc (e.g. Cloudiness estimation through PV)

This broad range of applications highlights the potential of
this data, but on the same side, also the complexity of evalu-
ating every use case in detail.

In this paper, we propose a novel data set consisting of
over 3.7 million real-world PLC measurements (S-3). The data
acquisition process is described in detail in S-3.1. In S-4, we
provide a first analysis of trends and different types of
interference in the FiN data set and S-5 discusses the afore-
mentioned fields of application in detail. Our analysis high-
lights the uniqueness of the proposed PLC data set, and its

relevance for a variety of future applications. This paper
should raise awareness and encourage the research community
to further investigate the various possibilities of FiN and
similar data sets.

2 | RELATED WORK

Electricity grids are an essential part of the economic and
personal lives of most people on earth. However, the electricity
grid is presently undergoing one of the biggest transformations
since its invention [1]. Climate changes are unquestionable and
with rising urgency for changes in the way we produce,
consume, store and transmit electrical power, new approaches
for our electrical grid become inevitable. On the other hand,
digitalisation and automation are opening up new ways of
dealing with these changes. To address both problems many
different aspects of future grid systems, often called smart
grids, need to be rethought.

A big number of research works concern especially fore-
casting of future demand in electrical power to optimise gen-
eration and demand [4-11]. Since it is a complex task to store
significant amount of electrical power, it is the goal to achieve
an equilibrium between generation and demand. Refs. [12-16]
show different data sets and works concerning electrical load
forecasting and address different scenarios on houtly or daily
basis, for households, big buildings, residential buildings, cities
or whole countries. Especially due to financial interests, the
topic of consumption forecasting receives a lot of attention. In
the context of the transformation towards a smart grid, how-
ever, this area only covers one aspect. Topics such as asset
monitoring, grid automation or grid secutity benefit compar-
atively little from this financial interest. In contrast, the FiN
data set attempts to address these less highlighted use cases in
particular and its SNR data from practical application adds
another important building block that will support research. In
the following, an overview of other possible fields of appli-
cation of SNR data is given, even though these were mainly
carried out on simulated data and were not evaluated in
practice.

® Asset monitoring deals with the monitoring and assessment
of the grid assets. This includes, for example, the recording
of the ageing process and partial discharges [17-20] or
the detection of events such as a fuse failure [21]. As refs.
[17-19, 21] show, SNR data is also suitable for this area.
Section 5.1 shows an example of how the FiN data can be
used to estimate the number of connecting joints installed
without manual measurements on site.

® Security is also of increasing importance due to the
increasing digitalisation of the electricity grid. More intelli-
gent controlling also opens up more routes of attacking the
electricity grid. Additional devices that supervise the correct
operation of the grid and that act independently of the
normal grid operation have been successfully tested in ref.
[22]. The PLC infrastructure can be used analogously for
decentralised, secure and independent monitoring of the
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network status [23]. The FiN data can be used to enable
research on real data.

® Grid stability and automation is a topic of major
importance, especially due to the increasing complexity of
the electricity grid. Many different works [24-28] deal
with different aspects and techniques to ensure stability or
automation. However, most of them have in common
that they are significantly based on grid parameters, such
as voltage or frequency. The FiN data set, together with
the SNR data, provides an additional new foundation of
data, which also opens up new scope for research in this
area.

3 | PROPERTIES OF FIN

FiN consists of 3.7 million SNR assessments collected from
38 PLC nodes that form 34 connections, since each
connection is measured in both directions, the data set shows
overall 68 connections. A highlight feature of FiN is that the
data was collected over a period of about 2 years and
recorded entirely in a real-life environment. Therefore, the
FiN data covers various weather conditions, seasonal effects,
noise sources, trends and sudden changes on mid-voltage
(mv) as well as on low-voltage (Iv) level. The data was
collected from 12th of April 2017 to 5th of February 2019
while 14 PLC modems are installed on mid-voltage level and
24 on low-voltage level. All cable lines examined are under-
ground cables. Apart from the SNR measurements, metadata
was collected for each PLC modem. Most important metadata
are cable related data (length, type, the number of wires,
cross-section, age, number of t-joints) and environmental
related data (daytime, weather, characterisation of the sur-
rounding area). See Table 1 for an overview of all available
metadata information. This section provides a detailed over-
view of how the data was collected and Table 2 summarises
the key facts.

TABLE 1 Summary of the available metadata

Data field Description

Year in which the cable/cable
section was installed

year of installation

year approximated Whether an installation year was

approximated or not
Cable section Index of the tespective cable section
Length Length of the cable/cable section, in m
Number of conductors Number of conductors
Cross section Conductor cross-section, in mm?

Voltage level Voltage level, MV = mid voltage;

LV = low voltage

t-joints Number of t-joints within the
respective cable section

Type Type of the respective cable/cable section

3.1 | Device locations

Overall 38 PLLC modems were installed in three different areas
of a German city with around 150,000 inhabitants. Furthet-
more, the PLC modems are certified under the IEEE 1901
orthogonal frequency-division multiplexing fast Fourier
transform Access standard. Figure 1 shows an example of how
a FiN installation looks like. All PL.C modems were installed in
cable distribution cabinets in the case of v and in substations

TABLE 2 A summary of the main characteristics of the data set

Data set key facts

Number of nodes 38
Number of nodes on low voltage level 24
Number of nodes on mid voltage level 14
Number of 1-to-1 connections 68
Number of data points 3,747,610
Number of different locations 3

Measutement frequency 15 min interval

Measurement begin Apr 2017
Measurement end Feb 2019

Weather and cable
characteristics

Meta data

FIGURE 1 A typical Fithler-im-Netz (FiN) installation. The power
line communication (PLC) modem (black box) is connected to one phase
and remains in the cable distribution cabinet.
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in the case of mv. Each location shows different types of
surroundings and covers different types of consumers. The
following gives a short overview of the three locations and
Figure 2 illustrates the network topology of all 38 PLC nodes.

3.1.1 | Location 1—low-voltage area

Residential atea, small houses/single family houses, only few
and small photovoltaic setups, adjacent to a big office complex
and smaller industry buildings with a big photovoltaic setup.

3.1.2 | Location 2—mid-voltage area

Residential area, mainly big houses/apartment buildings, only
few photovoltaic setups, adjacent to a residential area with
many small photovoltaic setups.

3.1.3 | Location 3—low-voltage area
Residential area, single family houses and big apartment
buildings, only few and small photovoltaic setups, adjacent to a
swimming pool complex and multiple schools.

3.2 | Electrical and visible neighbours

Since all PLC modems share the cable as communication
medium, they are able to talk not even to direct neighbours but
also to neighbours that are multiple hops away. Therefore, it is
necessary to distinguish between electrical neighbours, which
are physically adjacent to each other and visible neighbours
that can establish a PL.C connection to each other. To keep the
amount of data and redundancy low, we have decided to omit
visible neighbours that are no physical neighbours. Since only
electrical neighbours are shown in this data set (see Figure 2),
they are simply referred to as neighbours in the following;

33 |

Operation time and timeouts

Unless otherwise stated, PLC modems run 24/7. However
even in case of a high quality connection of a PLC modem we
observed that timeouts occur as part of the normal behaviour.
The reasons for timeouts are manifold and will be discussed
further in Section 4. However, if 2 PLC modem crashes it
automatically reboots and continues its normal operation cycle,
which is started with an initial SNR assessment. This initial
assessment is one reason for measurements that occurred
outside the 15-min slots.

3.4 | SNR assessment

Every quarter of an hour, PLC modems stop their normal
communication task and perform an assessment of the
connection quality by measuring the S. Therefore, each PL.C
modem sends a predefined signal while its neighbours are
listening for this signal. Based on the discrepancy between
sent and received signal the SNR is computed. Since PLC
uses a range of frequencies, the SNR is computed for 917
channels used by the modem. The temporal progression of
the SNR values over all frequencies is referred to as the SNR
spectrum. Figure 3 shows an example of an SNR spectrum
for 192 assessments that correspond to 2 days. Apart from
the SNR values, PLC modems also capture the modulation
level that was used to encode and decode the PLC signal.
The modulation level is given in eight discrete steps and
indicates the number of bits that are transmitted per signal
word. While modulation level is captured in receiving and
transmitting direction, the SNR values are only computed for
the received signal. Similar to the SNR spectrum, the mod-
ulation level is recorded over a frequency range and is
referred to as the tonemap. Figure 3 shows an example of a
tonemap for 192 assessments that correspond to 2 days. In
general, a higher SNR value and a higher modulation level
correspond to a better connectivity in terms of data
throughput.
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FIGURE 2 Grid graph of all three locations.
Location 1 in green, location 2 in blue, location 3 in
I red. Topology that is formed by the power line

communication (PLC) infrastructure. The numbers
27 represent the node ID, which is also used within the
I data set. Since the signal-to-noise ratio (SNR) is
recorded in the forward and backward directions,
there are 68 measured 1-to-1 connections.
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2,1 MHz
3,3 MHz
4,1 MHz
6,9 MHz
7,4 MHz
10,0 MHz
10,2 MHz
13,9 MHz
14,5 MHz

2017-12-30

Modulation level

2017-12-28

2017-12-29

2017-12-30

SNR in [dB]

18,0 MHz
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20,9 MHz
21,6 MHz
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25,1 MHz
27,9 MHz

Channels / Freq.

FIGURE 3 Top: Signal-to-noise ratio (SNR) spectrum for a single connection. The spectrum illustrates the SNR spectrum for 192 assessments that

correspond to two days. Dead spaces in the spectrum are due to channels or frequencies that are not cleared for use in power line communication (PLC)
communication. Of about 1500 channels, 917 remain useful channels. Bottom: Tonemap for a single connection. The tonemap illustrates the modulation level

for 192 assessments.

3.5 | Metadata

In addition to the SNR assessment multiple metadata infor-
mation were collected for each PLC modem. We distinguish
between two types of metadata: cable related and environ-
mental related metadata.

3.5.1 | Cable related metadata

Cable related metadata covers all information that were avail-
able from the cooperating grid operators or collected during
the PLC modem installation.

Available metadata: Age, length, number of wires, cross-
section, wvoltage level, number of tjoints, cable type, and
number of sections (if a connection between two PLC mo-
dems splits up into multiple parts). Due to missing historical
records, it was necessaty to approximate some very old en-
tries for the number of t-joints and the age. Oldest cable
connections in this data set were estimated to be installed
around 1955. Approximated values are indicated in the data
set. See Table 1 for an overview of all available metadata
information.

3.5.2 | Environmental related metadata

To investigate environmental influences on the PL.C connection
quality we provide weather data for each of the locations. Due to
the limited spatial extent of each location (below 800 m) we
assume a homogeneous weather inside each location. Provided
weather data covers in an houtly fashion: temperature, humidity,
wind speed, cloud coverage, and amount of rain. A full list of all
available weather data fields and for a detailed description we

refer to the documentation of OpenWeather [29] were the
weather data was acquired.

4 |
SET

PATTERNS, TRENDS IN FIN DATA

During the full 21 months of collecting data many different
trends, events, and pattern could be observed. In general, all
events are classified into different groups based on two
characteristics. The first is the periodicity, that is, whether an
event occurs once or in a periodic scheme. The second is
the time scope of an event, that is, whether an event takes
place in the scope of hours, days, months or even if it lasts
forever on. For example: Figure 4 shows the SNR pattern
of a fuse failure that takes place once and has a lasting
effect.

However, it is not possible to fully outline the reasons of
anomalies, as it is not known what effects will be visible in the
data. While the reason for a switching operation in the grid is
obvious, most of the sources of interference remain unknown.
Since even the operators of the electricity grid have no eco-
nomic means to determine the causes, this information cannot
be provided. Basic physical factors, like signal reflection, for
example, at joints, as well as poorly shielded electronics are
therefore assumed to be the main cause of the general
connection quality and most interference sources. Contrary to
our expectations, however, no significant influence due to the
load could be noticed. Although there are fluctuations within a
day, these do not correlate with the expected standard load
profile. The following is an overview of different groups of
visible behaviouts.

4.1 | Spiking disturbers and timeouts

Spiking disturbances similar to salt and pepper noise, including
complete timeouts, are part of the normal behaviour, even of
nodes with an overall excellent signal quality. But especially in
case of timeouts it is not possible to determine the timeout
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FIGURE 4 The signal-to-noise ratio (SNR) spectrum shows an
imitated fuse failure. On 25th of September the SNR spectrum shows a
significant break down due to an imitated fuse failure. The fuse failure was
simulated by using a coupling capacitor. The effect in the SNR is similar to
a high-pass filter.

27,9
MHz

Channels/Freq.

2,1
MHz

2017-12-29 2018-01-03 2018-01-08 2018-01-13 Time/Date

FIGURE 5 Spiking disturbances and timeouts. The spectrum shows
the signal-to-noise ratio (SNR) course over time and channels. Horizontal
dead spaces in the spectrum are due to channels or frequencies that are not
cleared for use for power line communication (PLC) communications. The
noisy course with occasional timeouts corresponds to the normal case for
many nodes.

cause due to the absence of background information. Figure 5
shows an example of an SNR spectrum that shows spiking
disturbances and timeouts.

4.2 | Periodic disturbances

When comparing the SNR profiles over time, a general
periodicity becomes visible in most nodes. Since the sun and
human behaviour are two major impact factors, this period-
icity is particulatly evident on a daily basis. Causes for peti-
odic disturbances could be for example, poorly shielded
hardware, broken inverters or street lighting. However, since it
is not possible to track down the cause for observed anom-
alies the actual source stays unknown. Figure 6 shows an
example with a significant SNR breakdown between 09:30am
to 11:00pm. A manual evaluation of the area around the node
showed that, the time window of the breakdown matches the
opening hours of a neighbouring tanning studio. Nonetheless,

FIGURE 6 Periodic disturbances in the signal-to-noise ratio (SNR)
spectrum of a connection. The time intervals of the disturbances match
with the opening hours of an adjacent tanning salon.

it was not possible to prove this correlation during the project
time, but the granularity that has to be dealt with becomes
clear.

4.3 | Trends

Electricity grids are subject to constant change. As reported in
refs. [17-19], changing cable properties due to cable age in
particular can affect the SNR spectrum and result in trends on
a long term perspective. Furthermore, other reasons for trends
are seasons, changing grid topology or changing human
behaviour like increasing energy demand. Figure 7 shows an
example of an SNR spectrum under seasonal change.

4.4 | Misc

The last group covers all effects that are related to the normal
operation of the grid. On the one hand side, this could be a
switching operation as an expected behaviour, but on the
other side also a fuse failure as an unexpected behav-
iour. Other examples are cable breakdowns, partial discharges,
and the installation of new grid hardware like coupling ca-
pacitors. As an example for this group, Figure 4 shows the
SNR pattern of a fuse failure imitated using a coupling
capacitor.

5 | FIELDS OF APPLICATION

To highlight the novelty and utility of the FiN data set we want
to shed light on different potential fields of application.
Therefore, we present the estimation of the joint count within
a cable section in more detail and give in addition an overview
of other examples. Underpinning the field of asset monitoring
with this joint count estimation we also want to discuss the grid
monitoring in general and security aspects All experiments are
based just on the SNR spectrum and do not involve any onsite

85U8017 SUOWILLOD A1) 3|qeotjdde ayy Aq peusencb afe sejolie YO ‘85N JO s3I 10j ARIG1T 8UIUO 8|1 UO (SUONIPUOD-PUE-SWBI W00 A8 | 1M AReq 1 Bul [UO//SdNY) SUONIPUOD PUe SWB | 8U1 88S *[2202/TT/7T] Uo ARiqiTauliuo A8|iMm ‘ueinesiesiey JO AseAlN eoluyos | Aq £602T 261/610T 0T/I0p/u0o" A8 1M Aleiq puljuo yoessa.ia1//:sdny Wwolj pepeoiumod ‘0 ‘L¥625TSZ



BALADA ET AL

27,9 MHz

% Channels/Freq.

N

,

2017-04-12 20170725

2017-11-06

2018-02-19

2018-06-03 2018-09-15 2018-12-28

Time/Date

FIGURE 7 Seasonal change in signal-to-noise ratio (SNR). Especially high the higher frequencies respectively channels, show a seasonal fluctuation in the
SNR. While high frequencies seem to be affected by interference in the summer months, the winter months show better signal quality.

measurements. We especially encourage the use of Machine
Learning (ML) to make use of the vast amount of data that is
included in FiN. However, this overview is not meant to be
limited to the applications on it, but rather to encourage one to
explore even more applications on top of it. Therefore, FiN is
proposed as a new tool to generate new ways to deal with the
manifold changes in electricity grids.

5.1 | Asset monitoring

Asset monitoring is an advantage of the wide use of PLC
infrastructure. An example of these assets are the cables
themselves, which can contain various numbers of joints.
There are different types of joints, which either connect two
different cables (transition joints), two identical cables (con-
necting joints) or a branch to a third end point, for example,
for a house connection (t-joints). Due to the individual chat-
acteristics of the joints, or due to a different quality of
installation, the joints on a cable section should have an in-
fluence on the SNR spectrum. To evaluate this, the FiN data
set provides metadata of the cables. Based on the number of
sections of a cable connection and the cable type, respectively,
transition and connection joints can be determined. The t-
joints are also explicitly indicated. To estimate the number of
joints within a cable section a multilayer perceptron (MLP) is
used as a baseline, which performs the regression task on the
basis of individual SNR profiles. As an extended approach, a
ResNet18 is utilised, which uses the SNR spectrum of one day
as input.

5.1.1 | Data preparation

The FiN data set provides 38 nodes, which are randomly
divided into training set with 27 nodes and test set holding 11
nodes. Since the SNR spectrum is highly correlated in the back
and forth directions of two nodes, attention should be paid not
to split them between the training and test data sets. Timeouts
are not considered for training and no further data augmen-
tation is performed. Finally, the training batches are scaled
between 0 and 1.

5.1.2 | Baseline and ResNet18

A simple 3-layered MLP is used as a baseline, which receives a
single SNR profile of a connection as input and uses this to
determine the number of joints. Similarly, a ResNetl8 is
trained, which receives a section of the SNR spectrum as input
instead of a single SNR profile. The section covers 96 time
steps, which corresponds to a time span of 24 h. Furthermore,
during the generation of the training batches, it is ensured that
no timeouts are included in this section. In both cases, a mean
absolute error (MAE) is used as loss, which has the advantage
of being less sensitive to outliers. Over time, the SNR spec-
trum changes and may even fluctuate periodically based on
days, weeks or seasons. Since these fluctuations can affect the
predicted number of joints, it is primarily important that the
mean or median prediction is correct. Outliers, on the other
hand, which are caused by peaks or short-term noise, are
therefore not problematic. The results are summarised in

Table 3.

5.1.3 | Results

In our experiments, the ResNetl8 was able to cleatly
outperform the MLP architecture. Nonetheless, a more
detailed analysis of the results shows that, as expected, the
accuracy of the results varies significantly. However, we as-
sume that providing the SNR spectrum of a whole day as
input for the ResNet allows the model to learn features that
are more resilient to spiking noise. Figure 8 shows an
example of the spectrum of a connection, the corresponding
results from the ResNet, and an overlay that was created
using Grad-CAM [30]. The ovetrlay corresponds to the
sensitivity in relation to the regression result of the model
depending on the PLC channels involved. With high sensi-
tivity, the given regions of the spectrum have a strong impact
on the regression result. It is cleatly visible that the regions
involved in the sections in which an accurate determination
of the number of joints is available deviate strongly from the
regions that lead to other results. In the SNR spectrum it is
also clearly visible that the parts for which a poor prediction
was made deviate strongly from the remaining parts. We
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assume that the data set as a whole still contains too few
connections and thus variants of joint installations to train a
model that can generalise without limitations. The influence

TABLE 3 Joint estimation results; ¢j = connecting joints; tj = t-joints;
mae = mean absolute error; mse = mean squared error

MAEtrain M. SEtrain MAE, val MSE, val

MLP,; 0.49 0.91 4.16 70.97
MLP,; 0.11 0.08 1.79 7.59
ResNet18,; 1.33 12.79 2.35 19.69

ResNet18,; 0.05 0.01 0.82 0.98

of each joint on the SNR spectrum is expected to vary over
time and will also depend on the quality of the installation.
Since both would require manual inspection on site, we use
FiN to mediate this and exploit the results so far as a basis
for further investigation into the aspect of how sleeves affect
the SNR spectrum over time.

5.2 | Grid monitoring

The ongoing digitalisation and automation of the electricity
grid is opening up new ways to use this data for monitoring;
By using a decentralised infrastructure such as a PLC
network, comprehensive monitoring of the electricity grid
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FIGURE 8 Connection joint estimation results for a joint over time. The left side shows the regression results and the corresponding signal-to-noise ratio
(SNR) spectrum, while the right side overlays the regression activation in addition to the same SNR spectrum. Sudden changes in SNR, as indicated by dashed

boxes, can significantly affect the regions considered for the regression task.
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becomes feasible, even at the low-voltage level. Applications
within grid monitoring are, for example, the localisation of
disturbances and anomalies, the detection of fuse failures and
partial discharges. To tackle these challenges the SNR spec-
trum was already proofed as a good candidate [21, 31].
However, we want to address the aspect of grid monitoring
from a different direction. By using the complete FiN data
set to find a suitable low dimensional representation and
subsequently clusters within this representation, we aim on
defining clusters of similar connection states. The SNR
spectrum shows overall rich information concerning many
different influences, however it also shows a lot of noise that
does not affect the general state of a PLC connection. By
merging similar SNR profiles into the same cluster, we want
to support interpretability of the SNR spectrum and provide
a good foundation for downstream tasks like anomaly
detection. In the following, we show how we built a low
dimensional representation of the SNR data and how we
obtained cluster labels.

52.1 | Low-dimensional representation

A low-dimensional representation, especially in two di-
mensions, support computational efficiency as well as
providing a good interpretability in terms of visualisation.
While the former is important when thinking about a elec-
tricity grid that consists of many thousands of nodes that need
to be monitored, the latter aspect is important for people
during a manual inspection. In order to build a low-
dimensional representation, t-distributed stochastic neighbor
embedding (t-SNE) [32], uniform manifold approximation
and projection (UMAP) [33] and multidimensional scaling
(MDS) [34] were utilised and within the experiments it could
be shown that all approaches have their limitations. While t-
SNE and UMAP show good results when the number of
samples is kept low (e.g. 150,000 samples), both approaches
tend to break down when a million or even the entire data set
is used. Figure 9 shows an example of different low-
dimensional representations using t-SNE when using

Sample count: 250000

different sample sizes. In contrast to t-SNE and UMAP, the
MDS approach shows significant drawbacks due to its
memory complexity of O(N?), wherefore MDS was not used
for any further experiment. Due to these limitations, more
sophisticated approaches such as ML based (|35, 30]) tech-
niques are suggested. Nevertheless, the next two sections
discuss how a low-dimensional representation, as shown in
Figure 9, can be used to detect anomalies and monitor the
connection states within the PLC network.

5.2.2 | Clustering

Providing low-dimensional data is not only valuable for
downstream ML tasks but can also be used to distil infor-
mation from the data. When operating an electricity grid,
decisions (e.g. scheduling a, onsite inspection) have to be
made on the basis of grid states and recognition of issues,
which is why a comprehensible representation of the grid
state is essential. One way to provide such a representation is
a comprehensive visualisation. To construct a visualisation
based on the raw SNR spectrum that can also be read by
non-specialists, t-SNE is applied to a subset of 250,000
samples. Afterwards, density-based spatial clustering of ap-
plications with noise is utilised to obtain labels for the low-
dimensional data. In the following, the cluster assignments
are used for the visualisation instead of the SNR profiles.
Figure 10 shows a visualisation of the cluster assignments in
form of a radial chart. Since the course of the state of a PLC
connection is strongly dependent on human processes, a
visualisation on a 24-h basis is appropriate. By such a
concentric arrangement, noise can be clearly distinguished
from a trend, and changes that extend over several days can
be easily recognised.

52.3 | Anomaly discovery

Anomaly discovery in SNR spectra is one of the most
challenging applications in this field. Even when an anomaly

Sample count: 1000000

Sample count: 150000

Sample count: 500000

FIGURE 9 Visualisations of t-distributed stochastic neighbor embedding (t-SNE) embeddings at different samples sizes from the Fiihler-im-Netz (FiN)

data set.
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FIGURE 10 A excerpt from the signal-to-noise ratio (SNR) spectrum (left) and the corresponding concentric visualisation of cluster assignments
(right). The time range shows an imitated fuse failure. Two triangles show the SNR spectrum before (purple) and after (orange) uninstalling a coupling
capacitor used to simulate a fuse failure. The corresponding area in the concentric diagram is highlighted as well. Overall, the concentric arrangement of the
diagram provides good access to insights about the data. At the same time, it is possible to distinguish at first glance between random timeouts and time-
dependent trends.

is reliably discovered, the cause of the anomaly remains un-
known, as it is usually very costly to find out. Therefore,
because the origins are largely unknown and the anomalies
usually have no direct impact on grid operations, it is not
possible to determine anomalies of interest. In addition, a
vast number of PLC connections show significant fluctua-
tions that at first glance appear to be an anomaly. It exists a
wide range of influences, which act as anomalies in the SNR
spectrum, but have no influence on the electricity grid or the
PLC. On the other hand, the anomalies carry a wide range of
potential information. Figure 10 shows a fuse failure which
could be within the SNR spectrum as well as in the circular
visualisation. Since, connection states are described by
discrete cluster labels we suggest approaches like Hidden
Markov Models [37], Dynamic Time Warping [38] or Tem-
poral Convolutional Networks [39] to detect anomalies. To
provide a first glance at this topic, Figure 11 shows a tran-
sition graph representing the probability that a given PLC
connection switches between two states at a given time. This
graph could be used directly to calculate a certainty for the

current state of being an anomaly or to estimate the same ~ FIGURE 11 Transition graph at 6 am. Based on the past sequence
of visited states, the transition graph illustrates the chance to switch

based on the last hours. Beyond that, nevertheless, the use of ) ‘ )
from one state to another. As can be well illustrated in the Figure 10,

mote soph1st1cated prObabﬂlSUC approaChes is recommended. the probability of being in a certain state changes over the course of a

However, this aspect is subject to further research and is day. The strength of a connection indicates the probability of the
briefly discussed in Section 8. specified transition.
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5.3 | Security

We also want to shed light on the idea of using a PLC-based
infrastructure as additional security layer, to monitor the
electricity grid. Due to their distributed, independent and
flexible nature, PLC systems are well suited to act as a
redundant control mechanism to check against traditional grid
monitoring. Since all nodes act independently, the network is
hard to compromise and even in the event of single failures,
the network is able to adapt if alternative routes are available.
Furthermore, since each cable connection is measured from
both sides (transmitting and receiving), adjacent nodes can
check a signal for plausibility. Because of these properties,
PLC-based monitoring systems might be a useful tool for the
detection of attacks against critical electricity infrastructure.

6 | CONCLUSION

In this paper, we proposed and analysed a new real data set
collected during practical operation of the power system. Our
work emphasises the high value of the data in a variety of po-
tential application domains, as well as the richness of its nature,
consisting of a mixture of structured, dynamic and static in-
formation. The SNR data presented here open up applications
that go beyond what previous data sets based on consumption
and voltage values allow. The applications shown are intended to
give a first impression of the wide range of possible applications
of the data set. Furthermore, we were able to successfully show
how the SNR data can be used to estimate the joint count within
a cable section. The key advantage of our approach is that no
additional knowledge about the infrastructure (cable length,
type etc.) is necessary. Only the SNR spectrum was used for this
task. We believe that further research on this topic will yield a
variety of new research challenges as well as important de-
velopments in PLC-based monitoring of smart grids. The final
Section 8 mentions further potential application possibilities
which will be pursued in the future.

7 | FUTURE WORK

The digitalisation of electricity grids is currently picking up
speed and is coupled with significant opportunities, risks and
challenges that still need to be overcome. Possibilities and use
cases that we have addressed so far can only shed light on a
small aspect.

As mentioned earlier, the FiN data set represents a novel
data set that can be used to address various challenges arising
from the transition to a smart grid. Therefore, we set out to
take a first glance at what is hidden in this previously widely
unrecognised SNR data from PLC networks. However, the
FiN data sets are only a first step in this area and represent a
proof of concept in several directions. To advance this new
area of SNR-based network assessment, we intend to address
several open questions in our future research:

® PV: Ref. [41] suggests that noise from PV inverters can be
detected within PLC networks, consequently it could be
possible to find a correlation between noise in SNR and
weather. Future work should further investigate these cor-
relations and prove them with practical examples. In addi-
tion, an automatic detection of new PV systems connected
to the grid will also be evaluated.

® Predictive maintenance: Encouraged by our results, we
conclude that the SNR spectrum contains rich information
about a wide range of cable properties. Challenges to be
investigated in the future are, for example, to what extent
artificial intelligence methods are suitable for predicting the
remaining lifetime of cable installations or the extent to
which a grid state identification can be implemented.

® Cable joints: During the collection of the data, it was
noticed that a significant proportion of failures result in
particular from failing joints. Further analysis of the joints
and their PLC spectrum is therefore subject of further
research.

® Topology estimation: As discussed in Section 3.2, PLC
cannot provide information on the type of neighbourhood,
whether an adjacent node is a direct or indirect neighbour.
Therefore, we propose the SNR spectrum as a carrier for
fingerprints of specific cable sections to determine whether
two neighbours are directly or indirectly adjacent. Future
research will address Al-based automatic detection of PLC
network topology.

® Privacy and cyber-security: The risks associated with any
digitalisation are software bugs and vulnerability to at-
tacks. For this purpose, findings from measurements of
the PLC infrastructure could also be used to plausibilise
measurement data and network states of the legacy grid
control systems on a second, independent level. In this
regard, questions also arise concerning the privacy of
customers who are forced to connect to such a system
during a PLC rollout. Even if full-scale expansion is still a
long way off, we would like to encourage discussion of
these issues.

® Additional measurements: Since PLC networks provide a
good platform to collect various measurements from the
nodes, future research will address the extent to which other
measurements, such as voltage, can contribute to more
comprehensive predictions regarding the application areas
presented.

® Robustness: Due to the comparatively small spatial extent of
the area, we want to explore the possibility of transferring
the models and findings obtained in FiN to other grid areas.
These include, above all, the future research topics already
presented, as well as the approaches shown in this work.

To address all the future work mentioned above, a second
data set is currently being created that uses the previous results
as a proof-of-concept and, in particular, increases the number
of nodes involved to several thousand. The massively larger
resulting data set is expected to yield more robust results in all
directions.
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