
The DeepThought Core Architecture Framework

Ulrich Callmeier1, Andreas Eisele1, Ulrich Schäfer2, Melanie Siegel1
1Computational Linguistics Department

Saarland University
P.O.Box 151150

D-66041 Saarbrücken, Germany
{uc,eisele,siegel}@coli.uni-sb.de

2Language Technology Lab
German Research Center for Artificial Intelligence (DFKI GmbH)

Stuhlsatzenhausweg 3
D-66123 Saarbrücken, Germany
ulrich.schaefer@dfki.de

Abstract
The research performed in the DeepThought project aims at demonstrating the potential of deep linguistic processing if combined with
shallow methods for robustness. Classical information retrieval is extended by high precision concept indexing and relation detection.
On the basis of this approach, the feasibility of three ambitious applications will be demonstrated, namely: precise information
extraction for business intelligence; email response management for customer relationship management; creativity support for
document production and collective brainstorming. Common to these applications, and the basis for their development is the XML-
based, RMRS-enabled core architecture framework that will be described in detail in this paper. The framework is not limited to the
applications envisaged in the DeepThought project, but can also be employed e.g. to generate and make use of XML standoff
annotation of documents and linguistic corpora, and in general for a wide range of NLP-based applications and research purposes.

Introduction
The challenges of the knowledge society cannot be met
without getting at the contents of the vast volume of
digital information. The concept of a semantic web is a
viable vision; hoping, however, that the semantic
structuring of such large volumes of unstructured
information can be achieved by human authors or editors,
is rather naive. It is therefore necessary to find solutions
for natural language processing that on the one hand,
output precise and informative semantic information and
are, on the other hand, robust and efficient.
The idea of DeepThought is to preserve the advantages of
shallow processing, namely robustness and efficiency,
while adding more accuracy and depth in a controlled
fashion at places where the application has a real demand
for such increase in semantic analysis. The goal is to
provide a system that combines different types of
linguistic processing and that can be used for applications
of different aims in a flexible way. E.g., information
extraction would need the detection of relevant types of
information, not full text understanding. Shallow
processing enriches a text with XML annotations (PoS,
phrases, named entities, simple relations). Deep
processing is only called at places where shallow analysis
hypothesizes relevant relations but cannot detect or select
the correct relations.
As the project aims at evaluating the idea of combining
different types of linguistic processing modules by three
different applications, the commonly used core system
must be efficient, robust and flexible.

Heart of Gold: A Common Architecture for
Applications

When combining different types of NLP modules and
their information output in a common architecture, it is
useful to provide a common “language” for the module’s
output. The advantage of such an approach is obvious:
Modules can communicate with each other, without the
need for output compilation or matching. A well defined
output (that was at first available for HPSG processing

modules) can be guaranteed also for modules of different
granularity of processing.
RMRS (robust minimal recursion semantics; Copestake
2003) has been chosen as the common interchange format.
The basic idea is to view the information modules, e.g. a
PoS tagger, deliver as an underspecified form of the
semantics that deep linguistic parsing delivers.
The DeepThought core architecture framework “Heart of
Gold” (HoG) provides a uniform and flexible
infrastructure for building applications that use and
combine RMRS-based (and other XML-based) natural
language processing components. The core architecture is
implemented in Java, but components and applications
can be written in other programming languages. The
system implemented so far builds on existing components
like PET (Callmeier 2000) for highly efficient HPSG
parsing, SProUT (Drożdżyński et al. 2004) for shallow
named entity recognition, RASP (Briscoe and Carroll
2002) for statistical parsing, and others.
The main design goals and features of the architecture
framework are:
• The integration of NLP components is flexible and

fits the needs of different applications.
• The application interface is simple to allow for easy

usage of the HoG by applications.
• RMRS (XML-encoded) is the uniform

representation language.
• The HoG is open to other XML standoff annotation

formats.
• Non-RMRS-outputting NLP components are

integrated through annotation transformation.
• An annotation database is used for the storage and

retrieval of computed linguistic analyses.
• HoG is a network-enabled architecture with

distributed components.
• It provides a lightweight, platform- and

programming language-independent communication
using XML-RPC.

• It is based on current technology, such as XML,
XML:DB, XPath, XML-RPC, XSLT.

MoCoMan – The Module Communication
Manager

The core architecture framework consists of a Module
Communication Manager (MoCoMan) which mediates
between the applications and the annotation-producing
NLP components (Figure 1). MoCoMan receives a request
(text documents, sentences) from an application, sends it
to the configured components, receives their analysis
results, and returns the results (combined or separately)
back to the application. MoCoMan is assisted by an
RMRS selector and unifier that combines the results of the
components, and an optional annotation database for the
persistent storage of computed analyses. MoCoMan is
also responsible for the order in which the components are
triggered. The idea is to have pluggable strategies
depending on configured components and applications.
Dynamic parameters like time constraints (e.g. for
applications where speech is involved) might also come
into play. The implemented default strategy is to let the
application specify the depth of desired analysis with the
query, and trigger all modules starting from the shallowest
(e.g. tokenizer) up to the requested depth.

Modules and Components
Initially, a DeepThought application starts an instance of
the core architecture MoCoMan with a configuration
setting for the required components; parts of the module
configuration facility are taken from the Memphis project
(Kasper et al. 2004). MoCoMan then starts (or remotely
connects to) the appropriate components, which are
typically existing NLP software. From the viewpoint of
MoCoMan, components are modules. I.e., in order to
integrate a new component in the DeepThought
architecture, a module subclass must be implemented and
provide an interface to the underlying component.
Because a component may be implemented in a language
other than Java, there is a generic XML-RPC module

class defined that can be used to connect to foreign
language components, possibly on a remote server.
Modules are also responsible for RMRS translation of
non-RMRS-aware components.

Computed
annotations
XML,RMRS

Application

Module Communication Manager
R

es
ul

ts

Q

ue
rie

s

External,
persistent
annotation
database
(XML:DB)

 Modules

External NLP
components

RMRS unifier

Figure 1: The HoG Core Architecture

Annotation Transformation
For the integration of non-RMRS-aware components,
XSLT can be employed to transform component-specific
XML output, e.g., of a chunker or a named entity
recognition component, into the RMRS format. An
example for the integration of a component in this way is
the SProUT module that uses XSLT transformations of
the XML-encoded typed feature structure output of the
named entity grammars along the lines of Schäfer (2003)
to generate an XML representation conforming to the
RMRS DTD (Copestake 2003).

Session and Annotation Management
MoCoMan provides a session management, so that
different input sessions with multiple input documents
(texts) can be referenced (Figure 2). MoCoMan manages a
collection of sessions for an application, where a session
consists of a collection of annotations (each collection
corresponds to one input document), that contain
computed standoff annotations. Annotation collections
and annotations are referenced through context-unique
IDs. Sessions, annotation collections and computed
annotations can optionally be stored in an XML
annotation database.

Framework

Session Annotation

collection (1
per input text)

Standoff annotations (computed by modules/components)

Figure 2: Multiple annotation collections in a
session

Query Parameters for NLP Analysis
After the system configuration is finished, queries can be
passed to the MoCoMan. Query parameters comprise an
input text, the depth of requested analysis and the token
range for analysis in the text. MoCoMan passes the query
to the modules that are configured in the architecture
instance and that are appropriate for the requested depth of
analysis. The RMRS annotations computed by the
modules are then returned to the application.

Metadata
Metadata on date, time, source, processing parameters,
processing options and component-specific configurations
of the producing component are stored together with the
created annotations (Figure 3). This allows to precisely
reconstruct the environment under which an annotation
was produced. This is an important feature if HoG is used
to create linguistically annotated texts for permanent
storage.

<metadata>
 <id>
 <entry name="created" value="2004-03-04 15:23:15"/>
 <entry name="processingtime" value="00:00,90"/>
 <entry name="sessionid" value="session1"/>
 <entry name="acid" value="collection1"/>
 <entry name="component" value="Sprout"/>
 </id>
 <conf>
 <entry name="sprout.outputpath" value="OUT"/>
 <entry name="sprout.stylesheet"
 value="enamex2rmrs.xsl"/>
 <entry name="module.name" value="Sprout"/>
 <entry name="module.depth" value="1"/>
 <entry name="module.language" value="en"/>
 <entry name="module.rootelement" value="SPROUTPUT"/>
 </conf>
</metadata>

Figure 3: Metadata (abbreviated) with information on
the generated annotation and module configuration

XML Annotation Database
If a query that has already been computed (i.e., a known
input text with the same query parameters) is passed to the
MoCoMan, then the pre-computed result is returned. This
can be done on the basis of the stored data. Moreover, the
DeepThought core architecture framework can optionally
provide a database for XML annotation storage. The main
purpose is persistent storage of computed annotations for
the automatic creation or enrichment of linguistic corpora
etc. The annotation database interface uses XML:DB
which is a vendor-independent interface to native XML
databases.1
The XML database interface supports the organization of
XML annotation, reflecting the session and annotation
collection tree hierarchy of MoCoMan. Standard
operations like inserting and deleting collections and
XML annotations, and a standardized query language
based on XPath are supported. Existing annotations can
also be modified using the XUpdate query language.
An important feature of the XML databases is indexing of
XML document elements with respect to efficient
retrieval. Depending on the structure of the annotation,
indexers can be defined through the database interface.
This should be done when integrating new components
and can be stored as part of the Module configuration,
which in turn is part of the annotation metadata. The
current status of the annotation database is experimental.
Once the RMRS DTD becomes stable, and if large text
corpora pre-annotated with RMRS are in focus, a flexible
full text search engine like Jakarta Lucene could be
considered, with RMRS-specific indexing and RMRS-
specific query types defined. The expected advantage is
increased performance, traded for a loss in flexibility
compared to the powerful XML:DB query framework.

Communication with the HoG
The core architecture framework comprising MoCoMan,
modules and the annotation database interface is entirely
written in Java and hence, the direct way to communicate
is by calling the Java API.
 However, a second, open way of communication is
supported, namely by XML-RPC. MoCoMan can act as
an XML-RPC server. Non-Java applications (e.g. written

1 The current, experimental implementation uses Apache
Xindice, but other (e.g. commercially available) XML databases
supporting XML:DB could be used instead.

in Python, as the demonstrator for creativity support for
document production and collective brainstorming in
DeepThought) and also non-Java components can connect
even remotely via network, and hence easily implement a
distributed architecture. There are also (abstract) Java
classes that can be used to implement clients that remotely
access the MoCoMan XML-RPC server.

Components integrated so far
Various NLP components are integrated into the core
architecture framework. JTok (developed at DFKI by Jörg
Steffen) is used for the purpose of tokenization and
sentence boundary recognition (it can be easily adapted to
other languages). JTok is implemented in Java. SProUT
(Drożdżyński et al. 2004), a multilingual, shallow
processing component that combines finite state and type
feature structure technology and includes morphologic
resources and named entity grammars for ten languages, is
integrated as well. RMRS output is gained with XML
transformations. SProUT is implemented in Java. RASP
(Briscoe and Carroll 2002) is a robust statistical parser for
English, which is developed in C and LISP on the basis of
ANLT. RASP delivers RMRS output of medium NLP
depth. PET is a highly efficient deep parser for HPSG
grammars. It is developed in C and C++ at Saarland
University and DFKI (Callmeier 2002). Using LKB
(Copestake et al. 2003) implementations, PET parsing
delivers RMRS output from HPSG grammars (cf.
Flickinger 2002 for English; Crysmann 2003, Frank et al.
2003 for German).
We will further integrate Chunkie/TnT (Skut and Brants
1998), which will need mechanisms for the generation of
RMRS output.

Combining RMRS output of different
components

Combining the information computed by the different
components is crucial for the benefit of HoG-based
applications. We give a short example for the sentence
“Where is the Nokia 8890 used?”. The named entity
recognition module SProUT gives RMRS output (in XML
format in Figure 4) for the named entity “Nokia 8890”.

 <rmrs cfrom="0" cto="12">
 <label vid="1"/>
 <ep>
 <label vid="1"/>
 <gpred>product_rel</gpred>
 <var sort="x" vid="2"/>
 </ep>
 <rarg>
 <label vid="1"/>
 <rargname>CARG</rargname>
 <constant>Nokia_8890</constant>
 </rarg>
 </rmrs>

Figure 4: Shallow RMRS generated by SproUT for the
named entity “Nokia 8890”

The HPSG processing, using the NE information, delivers
RMRS output as well (which is represented in Figure 5
without XML annotation, due to the amount of space).

h1
 int_m_rel(h1,h3)
 PSV(h1,x4)
 TPC(h1,e5)
 ARG1(h1,u19)
 ARG2(h1,x4)
 prpstn_m_rel(h3,h6)
 qeq(h6,h9)
 unspec_loc_rel(h9,e5)
 ARG1(h9,e2)
 ARG2(h9,x10)
 ING(h9,h1)
 place_rel(h11,x10)
 which_q_rel(h12,x10)
 RSTR(h12,h13)
 BODY(h12,h14)
 qeq(h13,h11)
 _the_q(h15,x4)
 RSTR(h15,h17)
 BODY(h15,h16)
 qeq(h17,h18)
 named_n_rel(h18,x4)
 CARG(h18,Nokia_8890)
 _use_v_1(h1,e2)
 PSV(h1,x4)
 TPC(h1,e5)
 ARG1(h1,u19)
 ARG2(h1,x4)

Figure 5: RMRS for the sentence “where is the Nokia
8890 used?”, produced by the English HPSG grammar
The relation printed in bold corresponds to the named
entity RMRS gained from the SProUT module. Different
strategies of RMRS combination can be used, where a
simple approach is to use token span information to
integrate information about words that are unknown to
one component, but recognized by another (Nokia 8890 in
the example). Subtype information from the type
hierarchy can be exploited in order to find matching
relations. In the example, product_rel from the shallow
named entity recognition component is a subtype of the
named_n_rel in the deep RMRS result.

Conclusion
The DeepThought core architecture framework (HoG) for
the combination of natural language processing modules
allows relatively simple connection and inclusion of new
modules and can be used by different NLP applications in
a flexible way. The centre of HoG is the module and
communication manager (MoCoMan), which organizes
the information flow between modules and applications.
The underlying idea in NLP module combination is the
usage of RMRS as a common output format. Next steps in
the ongoing project DeepThought will be various
evaluations: It will be evaluated with what module
combination each of the applications work best and
whether the approach indeed combines the advantages of
different types of NLP components when used with
applications.
A further application of the architecture framework is the
creation of large, richly NLP-annotated texts as a basis for
question answering and similar functionality.

Acknowledgements
We would like to thank Hans Uszkoreit, Jörg Steffen,
Özgür Demir, Robert Barbey, Atsuko Shimada, Matthias
Grossklos and our DeepThought project partners
(http://www.project-deepthought.net)
This document was generated partly in the context of the
DeepThought project, funded under the Thematic
Programme User-friendly Information Society of the 5th
Framework Programme of the European Union –
(Contract N° IST-2001-37836). The authors are solely
responsible for its content, it does not represent the
opinion of the European Union and the Union is not
responsible for any use that might be made of data
appearing therein. This work has partly been supported by
a grant from the German Federal Ministry of Education
and Research (FKZ 01 IW C02).

References
Drożdżyński, W., Krieger, H.-U., Piskorski, J., Schäfer,

U., and Xu, F. (2004). Shallow Processing with
Unification and Typed Feature Structures –
Foundations and Applications. In: Künstliche
Intelligenz (1). http://www.kuenstliche-
intelligenz.de/archiv/2004_1/sprout-web.pdf.

Briscoe, E. and Carroll, J. (2002) Robust accurate
statistical annotation of general text. In: Proceedings of
the 3rd International Conference on Language
Resources and Evaluation, Las Palmas, Gran Canaria
(pp. 1499-1504).

Callmeier, U. (2000). PET – A platform for
experimentation with efficient HPSG processing
techniques. In: Natural Language Engineering, 6 (1)
Special Issue on Efficient Processing with HPSG:
Methods, systems, evaluation (pp. 99–108). Editors: D.
Flickinger, S. Oepen, H. Uszkoreit, J. Tsujii.
Cambridge, UK: Cambridge University Press.

Copestake, A. (2003). Report on the Design of RMRS.
Technical Report D1.1b, University of Cambridge, UK.

Crysmann, B. (2003). On the efficient implementation of
German verb placement in HPSG, Proceedings of
RANLP 2003, Borovets, Bulgaria.

Frank, A., Becker, M., Crysmann, B., Kiefer, B. and
Schäfer, U. (2003). Integrated Shallow and Deep
Parsing: TopP meets HPSG. In: Proceedings of ACL-
2003 (pp. 104-111). Sapporo, Japan.

Flickinger, D. (2002). On building a more efficient
grammar by exploiting types. In Stephan Oepen, Dan
Flickinger, Jun'ichi Tsujii and Hans Uszkoreit (eds.)
Collaborative Language Engineering, Stanford: CSLI
Publications, pp. 1-17.

Kasper, W., Steffen, J., Piskorski, J., Buitelaar, P. (2004).
 Integrated Language Technologies for Multilingual

Information Services in the MEMPHIS Project. In:
Proceedings of LREC-2004, Lissabon, Portugal.

Schäfer, U. (2003). WHAT: An XSLT-based
Infrastructure for the Integration of Natural Language
Processing Components. In: Proceedings of the
Workshop on the Software Engineering and
Architecture of Language Technology Systems, HLT-
NAACL03 (pp. 9–16). Edmonton, Canada.

Skut, W. and Brants, T. (1998). Chunk tagger – statistical
recognition of noun phrases. In: Proceedings of the
ESSLLI Workshop on Automated Acquisition of Syntax
and Parsing. Saarbrücken.

