
Chaldene: Towards Visual Programming Image
Processing in Jupyter Notebooks
Fei Chen* Philipp Slusallek*† Martin Müller† Tim Dahmen*

*German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
†Saarland University, Saarbrücken, Germany

{fei.chen, philipp.slusallek, tim.dahmen}@dfki.de
martin.mueller1@uni-saarland.de

Abstract—Jupyter Notebook [1] is an open source, interactive
computing platform widely used in the scientific computing and
artificial intelligence community [2], [3], [4], [5]. The popularity
of the platform is a consequence of the generated single notebook
document combining source code, markdown, and visualizations
(Fig.1). This makes the platform ideal for tasks such as data
analysis and scientific image processing, where repeatability
and transparency of analysis tasks are just as important as
functionality and performance. However, the obligatory use of
code is an obstacle to acceptance of the platform in scientific
communities where programming is not generally taught in the
curriculum. Consequently, many experimental communities rely
on manual image processing using graphical user interfaces
[6], [7], [8]. The obvious disadvantages are the lack of re-
peatability, transparency, and precision in image processing and
data analysis tasks. To solve these issues, we propose to extend
Jupyter Notebook with visual programming cells. In each visual
programming cell, users can create the program by assembling
graphical nodes that represent computational instructions, and
the textual program is automatically generated and executed
by the environment. Cells will support version control aware
serialization and deserialization. The core innovation of our
proposed work lies in a change of workflow and the adaption
of a jupyter-based workflow in experimental communities that
have no culture of working with source code. The system can
be adapted to multiple applications and domains by integrating
new node types. We hereby present an early version of the system
and provide one use case from microscopy image processing to
demonstrate the integration of existing non-Python software.

Index Terms—VPL, visual programming language, graphical
programming, Jupyter Notebook, image processing

I. DESIGN AND IMPLEMENTATION

A. Visual Programming Language

Our visual Programming language follows the dataflow
paradigm and is partly implemented using the litegraph.js
library [9]. The programs are modeled as directed acyclic
graphs (DAG) of data, flowing between vertices. In DAG, a
vertex represents a node in visual programming, and a directed
edge connecting two vertices signifies the data flow from one
to the other. Therefore, our visual programming contains five
elements: nodes, connectors, graphs, canvas, and nodes box.

Nodes are the basic building blocks in the visual language
and they represent data structures, function calls, class in-
stantiations, or other statement representations in the textual
programming language. To define a node, we declare two

Fig. 1. Markdown cell, Code cell, Visual Programming cell from top to
bottom in a single document in Jupyter Notebook platform. Node instance,
connector, graph and canvas examples are shown in Visual Programming cell.

parts of information: one part is the description of the visual
signature such as title, input, output, property. For input
arguments and output values, the type could be provided for
type matching. The other part is the source code this node
represents and the import library. The connector is a special
node and a connector linking the input port with the output
port from two separate nodes represents the data flow from
input to output. The graph is built by linking the nodes and
can be visualized on the canvas. The canvas is the graphical
panel that contains visual programming language nodes. It
organizes the graphical representation of languages elements
spatially and visualizes the graph. Additionally, it allows users
to create nodes from the node box as well as navigate around
the nodes by panning and zooming. The node box is the
container holding all the node classes for use and allows users
to select one of the nodes to create an instance on the canvas.
The node class can be added to the node box by registration.

B. Integrate Visual Programming in Jupyter Notebooks

The document in the Jupyter Notebook user interface con-
sists of a sequence of cells (See Fig.1). A cell is a block of
input fields and allows users to edit and run the command

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 S
ym

po
si

um
 o

n
V

is
ua

l L
an

gu
ag

es
 a

nd
 H

um
an

-C
en

tri
c

C
om

pu
tin

g
(V

L/
H

C
C

) |
 9

78
-1

-6
65

4-
42

14
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
L/

H
C

C
53

37
0.

20
22

.9
83

29
10

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik . Downloaded on September 24,2022 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The user interaction of visual programming in Jupyter Notebooks.

inside the cell. To integrate the visual programming language
without inordinate amounts of change to the basic Jupyter
Notebook user interface, we created a new type cell, named
visual programming cell. (See bottom cell in Fig.1). This cell
supports serialization and deserialization and is easy for shar-
ing. Furthermore, it is compatible with basic functionalities
in the Jupyter Notebook including cell creation, manipulation,
and cell execution.

Cell Creation and Manipulation. The Jupyter Notebook
exhibits a modal user interface including edit mode and
command mode. The keyboard behaves differently, depending
on which mode the Notebook is in and our visual programming
cell fully supports these two modes. If the cell is in edit mode,
the user can drag and drop nodes and build a computation
graph on the canvas. Whereas if the cell is in command mode,
the cell is edited as a whole: there is no typing into individual
cells, the whole of the cell can be created and manipulated
like cut, copied, pasted, deleted, moved up and down, as well

as affected with operations from the menu bar, toolbar or
shortcuts.

Cell Execution. Jupyter Notebook is a web-based applica-
tion and adopts a client-server infrastructure. The client is the
notebook user interface which allows users to edit and send
code to the web server via HTTP requests, after which the code
is passed to the computational engine named kernel and exe-
cuted. Therefore, the textual source code needs to be translated
from our visual language. The program in visual programming
language is modeled as an directed acyclic graph. Actually,
the translation from visual programming language to text-
based language is the topological sorting problem of DAG.
The Kahn’s algorithm is implemented for topological sorting.

C. User Interaction
In the Section A, we describe the definition of visual

programming language, especially new visual nodes types dec-
laration from textual code. When building the visual program,
the user directly drag the nodes instance from the node box
and drop them on the canvas and then connect these nodes.
An example is shown in Fig.2.

II. USE CASE

ImageJ/Fiji [6] is an open-source image processing software
in wide use, for example, in the microscopy community for
image processing tasks. ImageJ is written in Java and provides
a graphical user interface for interactive use. The key strength
of the software package is the existence of a large number
of plugins for various tasks in scientific image processing.
To utilize the rich image processing ecosystem of ImageJ/Fiji
in Jupyter Notebook, we integrate ImageJ/Fiji into our visual
language by creating visual node types that represent a set of
python wrapper functions and these nodes can be connected to
perform several image processing tasks. An image processing
use case utilizing the visual language is a real-world task
from the scanning electron microscopy (SEM) domain and
is presented in Fig.3.

Fig. 3. (a) Workflow for a simple data processing task in electron microscopy. (b) Input of the workflow. (c) Output of the workflow.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik . Downloaded on September 24,2022 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This work was supported by German Research Foundation
(DFG) under the Grant NFDI4MatWerk (NFDI).

REFERENCES

[1] Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,
Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,
Avila, D., Abdalla, S., Willing, C. & Team, J. Jupyter Notebooks - a
publishing format for reproducible computational workflows, Positioning
And Power. In Academic Publishing: Players, Agents And Agendas. pp.
87-90, 2016.

[2] Milicchio, F., Rose, R., Bian, J., Min, J. & Prosperi, M. Visual
programming for next-generation sequencing data analytics. BioData
Mining. Vol. 9, pp. 1-17, 2016.

[3] Janssen, J., Surendralal, S., Lysogorskiy, Y., Todorova, M., Hickel, T.,
Drautz, R. & Neugebauer, J. pyiron: An integrated development envi-
ronment for computational materials science. Computational Materials
Science. Vol. 163, pp. 24-36, 2019.

[4] Dehaye, P., Iancu, M., Kohlhase, M., Konovalov, A., Lelièvre, S., Müller,
D., Pfeiffer, M., Rabe, F., Thiéry, N. & Wiesing, T. Interoperability in the
OpenDreamKit project: the math-in-the-middle approach. International
Conference On Intelligent Computer Mathematics. pp. 117-131, 2016.

[5] D. Ozturk, A. Chaudhary, P. Votava and C. Kotfila, GeoNotebook:
Browser based interactive analysis and visualization workflow for very
large climate and geospatial datasets. AGU Fall Meeting Abstracts. Vol.
2016, pp. IN53A-1876, 2016.

[6] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair,
M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B.
& Others. Fiji: an open-source platform for biological-image analysis.
Nature Methods. Vol. 9, pp. 676-682, 2012.

[7] The GIMP Development Team GIMP. https://www.gimp.org 2019,6,12.
[8] Dahmen, T., Marsalek, L., Marniok, N., Turoňová, B., Bogachev, S.,

Trampert, P., Nickels, S. & Slusallek, P. The Ettention software package.
Ultramicroscopy. Vol. 161, pp. 110-118, 2016.

[9] litegraph.js. https://github.com/jagenjo/litegraph.js 2022.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik . Downloaded on September 24,2022 at 16:27:56 UTC from IEEE Xplore. Restrictions apply.

