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ABSTRACT
In highly automated driving (HAD), it is still an open question
how machines can safely hand over control to humans, and if an
advance notice with additional explanations can be beneficial in
critical situations. Conceptually, use of formal methods from AI –
description logic (DL) and automated planning – in order to more
reliably predict when a handover is necessary, and to increase the
advance notice for handovers by planning ahead at runtime, can
provide a technological support for explanations using natural lan-
guage generation. However, in this work we address only the user’s
perspective with two contributions: First, we evaluate our concept
in a driving simulator study (N=23) and find that an advance notice
and spoken explanations were preferred over classical handover
methods. Second, we propose a framework and an example test
scenario specific to handovers that is based on the results of our
study.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
• Applied computing→ Transportation; • Computing method-
ologies→ Planning for deterministic actions; • Theory of compu-
tation → Description logics.
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1 INTRODUCTION
Highly automated driving (HAD, [4]) is about to hit public roads1
and with that, computers will participate in actions and decisions
that affect humans; this will soon also be the case for other cyber-
physical systems (CPS) like drones, e.g. for delivery services. A
recent study found that SAE level 2 [50] (Standard SAE Interna-
tional) Tesla drivers have significant driving experience and high
self-rated computer expertise, and they care about how automation
works. Very common automation failures like incorrectly detected
lanes and hard braking were not perceived as risky by this user
group, as they stressed the importance of being alert and having
the technical limitations in mind [14]. If the car encounters a high-
risk situation, it will still need to efficiently support the user in
regaining situational awareness [6, 17, 27, 64]; otherwise, human
life is inherently at stake.

The German Federal Office for Motor Vehicles (KBA) reported
that the Tesla autopilot poses a significant traffic risk after testing
it for several thousand kilometers. Among others, one criticism
was that it did not provide an explanation or notification to the
driver when it ran into a highly critical situation. The root cause
of the problem is that most CPS do not have any built-in concepts
to explain their behavior. These systems rely on their own static
design instead of effectively communicating their state, current
1https://innovationatwork.ieee.org/new-level-3-autonomous-vehicles-hitting-the-
road-in-2020/
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problems, and possible solutions to the user. For HAD, a summary
report containing only relevant information before the handover
should be provided. It is crucial to explain the situation to the
human in a concise and understandable manner. The nature of the
explanation directly depends on the advance notice, i.e., the time
available before a critical handover occurs.

To evaluate the approach of advance notice and explanations,
we conducted a driving simulator study (N=23) in Microsoft AirSim
[52] to compare advance notice and explanations to the classical
handover without explanations (notification only). In Section 5 we
discuss the lessons learned from our study, and derive suggestions
for an evaluation framework for handover methods in HAD as an
extended discussion.

2 RELATEDWORK
The related work in HCI can be separated into user modeling, situ-
ation awareness/vigilance, and multimodal interaction. User mod-
eling enables a system to adapt and make assumptions about the
current user’s goals, plans, knowledge and (possibly false) beliefs,
i.e., maintain a conceptual understanding of the user (user model
[32]), in which user differences need to be modeled explicitly – first
in dialogue systems, and nowadays for a broad range of personalized
applications ranging from museum guides [55] to recommender
systems [48]. Clearly, handovers also must be tailored to individual
users [43].

Situation awareness describes the human’s awareness of the
environment [17], including awareness of critical information for
a task at hand, mainly known from aviation but also applied to
HAD [56]. Such information depends greatly on the situation (e.g.
a pilot approaching an airport vs. a driver navigating in dense
traffic). The definition and recognition of situations in relation to
machine operations have been studied. Adams et al. [3] identified
human factors that can be measured during operation to assess the
situation awareness of human operators.

Two approaches can be distinguished depending on sensor place-
ments: body-worn sensors measure human activity directly [39],
while control elements (e.g. the steering wheel of a car, the flight
stick of a plane) allow indirect assessment of human activities [29].
Cognitive effects for assistive systems can be measured, e.g., using
self-assessments and questionnaires [35] or the Index of Cognitive

Activity (ICA; [40]), a pupillometric measure, in dual task studies
involving simultaneous language processing [12, 13, 18].

In highly automated systems, the risk of humans being out of
the loop increases and thus a potential handover is more difficult
to achieve [17]. The degree of vigilance plays an important role;
it describes the ability of a human to attend to the environment
although the current situation might not require much attention.
Prior research has developed vigilance measures based on question-
naires, and sensors assessing heart rate, eye movement and skin
conductance [16].

Multimodal interaction has the potential to increase usability
and thus the safety of operation [9]. It has been used for mobile
applications and environments, including gesture and speech [62],
eye tracking and face detection [45], and gaze-based [51, 61] and
tangible interaction [28] to adapt to the user’s needs. The style of
visualization can improve trust in autonomous driving [24]. The
authors found that using a spatial representation of the environment
to visualize the situation and the actions of the autonomous vehicle
improved performance significantly.

Prior work has also identified feedback factors that help to im-
prove the understandability of and trust in system decisions made in
autonomous driving, i.e., an explanation why (“obstacle ahead”) is
preferred over information about how something happens, e.g., “the
car is braking” [33]. Visually, a world-in-miniature visualization or
a human-like chauffeur avatar can increase trust in automation [24].

A closely related study [60] shows user preference in car-driver
handovers prompted by multimodal (auditory and visual) warnings;
however, in some cases, the visual component of the warning may
obstruct the view of the driver. Other studies showed that an audi-
tory alert ahead of time caused participants to look more at the road
before the handover and disengage from the secondary task earlier
[58]. Also, giving early additional audio-visual explanations about
an appropriate upcoming maneuver leads to faster responses and
longer time to collision with obstacles [7]. The latter two support
the main motivation of generating an advance notice with explana-
tions. Explanations that build trust in autonomous vehicles have
been researched to be adapted in terms of context, cognitive skills,
alertness, contextual knowledge, and time available. The authors
describe such adaptations in the form of different roles, such as
developer, assurance, end-user, and external explanation needs [22].
Shen et al. investigated in which situations explanations become
necessary, as well as how they need to be changed for different
scenarios or driver types and can be predicted with a learning-based
model [53].

Other framework descriptions take the perspective of attention
management [27] or provide an attention-aware architecture for
the integration of handheld consumer devices to increase the lead
time for transitions that increase safety and comfort [64].

The time for transfer of control (ToC) in critical situations has
been examined in several studies [11, 23, 44]. A review of 25 studies
on urgent take-over scenarios by Eriksson and Stanton [19] revealed
that the mean allowed time for ToC was 6.37 ± 5.36 seconds and
the mean reaction time was 2.96 ± 1.96 seconds. Mok et al. [44]
examined driver behavior when drivers had to take over control
before they encountered a road hazard with takeover times of 2,
5, and 8 seconds. Gold et al. [23] examined when a driver must
engage with the driving task again so as to have safe handling
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in critical situations by comparing two take-over times, namely
5 and 7 seconds, and also compared this to manual driving. The
results showed that for a shorter takeover time, the reaction of the
driver was faster and the decision process was quicker. However,
the quality of take-over was worse than it was given the longer ToC
time. Following a similar approach, Dambök et al. [11] conducted a
study which compared three different ToC times (4, 6 and 8 seconds).
Their aim was to find the best case boundary where the driver
would be able to handle even the most difficult case. In contrast to
the studies on ToC for critical take-over situations, Eriksson and
Stanton [19] investigated ToC time in a non-critical scenario. They
conducted a within-subject experiment with three different driving
conditions (manual driving, highly automated driving and highly
automated driving with a secondary task). The results showed an
increase in take-over time if the transfer of control happened in
non-critical scenarios. Merat et al. [41] found that drivers were able
to regain stable control over the vehicle after around 40 seconds.

A meta-analysis of 129 studies found that the mean takeover
time in SAE level 2 or higher was lower when the urgency of the
take-over situation was higher, and performing a secondary task
task with a tablet or similar yielded increased mean takeover times
[65]. In order to better prime drivers for the ToC, van der Heiden
et al. [57] investigated auditory pre-alerts triggered well before the
actual ToC request.

3 TECHNOLOGICAL SUPPORT FOR
EXPLANATIONS WITH ADVANCE NOTICE

We outline the architecture that conceptualizes the necessary tech-
nological support to realize safe handovers in mixed-initiative con-
trol (see Figure 1). Our concept addresses the specific requirements
during highly critical handover situations, through advance no-
tice and explanations. Our contribution consists in preparing the
ground for a long-term research agenda.

Our architecture concept leverages formal methods from AI –
description logic and automated planning – in order to more reli-
ably predict when a handover is necessary, to increase the advance
notice for handovers, and to generate explanations of the reasons
for handovers. It further uses methods from human-computer in-
teraction and natural language generation to develop solutions for
safe and smooth handovers.

The component “Advance Notice” enables the system, based on
automated planning [21, 49], to decide about handovers ahead of
time, at run-time, based on the current circumstances (e.g., traf-
fic/weather conditions in HAD) and the likelihood of entering a
critical situation. To predict such situations, automated planning
uses an abstract description of the world. To assess the criticality
of a situation and to generate explanations of critical situations, de-
scription logic (DL) [5] methods are used. This allows the system to
specify constraints, to generate higher-level information, to detect
inconsistencies, and to generate formal, logical explanations. The
third component mainly uses techniques from natural language
generation (NLG) [47] to generate verbal and visual explanations
suitable for human consumption. It transforms the information
generated via DLs and planning to inform the user about the sys-
tem state. Finally, methods from HCI, such as user modeling [26],
support a multimodal handover realization based on information.

Environment information (such as sensor data or any other
knowledge) needs to be provided in a model-compatible way, i.e.,
translated into the ontologies underlying the system. For a proto-
typical realization, AirSim as indicated in Figure 1 is one option,
but our concept is generic.

4 USER STUDY: USER HANDOVER
PREFERENCES FOR ADVANCE NOTICE

In the user study, we decided to focus on users’ handover prefer-
ences for advance notice when combined with additional verbal
explanations for four fixed critical example handover scenarios, by
creating mock-up scenarios. We thereby explicitly compare differ-
ent behaviors of a simulated intelligent system (an approach similar
to Wizard-of-Oz studies).

4.1 Methods
In our experiment, participants drove in a driving simulator in four
different driving scenarios while being engaged in a secondary task.
After each scenario, they answered two questionnaires. At the end,
they took part in a semi-structured interview.

4.1.1 Participants. Overall, 23 participants, aged 21–29 (M = 25.13,
SD = 2.42, 8 males), were recruited using social media, mailing lists
and posters on campus. They were paid 10 euros. The screening
criteria for the participants were that they were German native
speakers and held a valid driver’s license for cars, since (a) the
questionnaire and the spoken instructions were in German and
(b) the driver’s license ruled out significant visual impairments.
Overall, participants self-rated their prior driving experience rather
high (M = 4.04, SD = 0.77, on a 5-point Likert-like rating scale) and
reported a medium general trust in autonomous vehicles (M = 2.78,
SD = 0.95, also on a 5-point Likert-like rating scale). Only two partic-
ipants had already driven with driver-assistance systems (including
lane assist and adaptive cruise control), but 16 participants would
drive autonomous vehicles if they were available. Their driving
experience, measured in kilometers driven in the last year, ranged
from the categories 0–5,000km to 20,000–25,000km.

4.1.2 Conditions. Most previous studies about HAD analyzed the
timing for the handover requests [10, 23], but they did not focus on
an explanation of why the handover was occurring. Depending on
the length of the explanation, more time to address the handover
may be needed. In the current study, both are taken into account,
which leads to the following timeline conception. Here, the han-
dover timeline consists of three essential points. The first two, Point
A and Point B, are in temporal relation to the last point, the critical
situation onset (see Figure 3). The figure represents an example
scenario with high criticality. However, in order to avoid learning
effects, different but similarly critical scenarios were implemented
for the user study as shown in the supplemental video. The critical
situation onset was the beginning of a construction zone. Point A
occurred 30 seconds before that and depending on the condition,
different information was presented to the user.

At Point B, which was 15 seconds before the critical situation
onset, an acoustic signal was given (a beep). The fifteen seconds be-
tween point B and the critical situation onset was the time window
for the handover, where the participants were to take over control
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Figure 2: The participants’ preferred ranking of conditions with 1 = best and 4 = worst

of the car. During that window, another car appeared in front of the
participant in the driving simulator and showed unusual driving
behavior. We decided on the 15 second time frame after reviewing
literature with the criticality of the situation and the secondary task
as determinants for takeover time [65] and piloting our specific
implemented scenarios to allow for a safe but also quick response.
The 12–15 second timeframe was found to allow for sufficient time
to look at the road for 3–4 seconds, put one’s hands on the wheel
and feet on the pedals, push the button for confirmation (7–8 sec-
onds) and take a first glance at the mirror and instruments (12–15
seconds) to indicate situational awareness [36].

In the four conditions of the study, we simulate highly autonomous
cars that feature a planning component, an explanation component,
both, or none. Planning enables the car to initiate the handover 15
seconds earlier (at point A) whereas the explanation component
alone can only provide an explanation of the current situation (at
point B, 15 seconds before the critical situation).

Notification Only: The driver is notified with a beep at point
B without further explanation.

Advance Notice: At point A, the user gets a generic advance
notice: ‘Please pay attention to the road. In 15 seconds, you
will get a handover request.’ At point B, a beep sounds.

Explanation: At point B, the user gets an explanation directly
after the beep, e.g.: ‘Be alert to the erratic red car ahead with
three lane changes in the last 10 seconds. The driver may be
ill or drunk. You are required to take over before reaching
the construction zone!’

Advance Notice + Explanation: At point A, the user gets an
advance notice and the same explanation as in the previous
condition. At point B, a beep sounds.

The participant had to take over control by the critical situation
onset. We accompany this paper with a video that shows footage
of all conditions and the study apparatus.

Driving scenarios. To avoid learning effects, we randomly com-
bined the following driving scenarios with the previously defined
four conditions and slightly adapted the spoken notifications. All
scenarios used the same critical case, which in general was erratic

behavior of another car leading to a takeover request and an addi-
tional explanation depending on the condition. The actual takeover
request was always indicated with a beep in all conditions, with a
break after the speech output. A generic speech output was also
generated in the conditions without explanations.

All scenarios featured an approaching construction zone in an
urban environment. Additional criticality was introduced by the
following road users: S1: drunk/reckless driver (erratic steering),
S2: car remaining in the left lane, S3: very slow driver with sudden
braking, S4: truck with unsecured load.

When choosing the explanatory sentences, we followed two
orthogonal goals: First, the explanations should provide sufficient
information for the purpose of informing the subject of the sur-
roundings. Secondly, it is also imperative not to overload the text
with too many details on the situation, so as to reduce cognitive
overhead.

4.1.3 Tasks & Design. Participants played the game 2048 [2] on
a tablet as a secondary task while the driving simulator was in
automation mode. Similar to prior studies [7, 58], the participants
did not have to immediately give up their secondary task if an
advance notice was given. This was in all conditions then clearly
indicated with a beep as the handover request. At this point, they
were required to pause the game, to take over control and confirm
this with a button press on the steering paddle shifters. We chose
the game 2048 [2] as it can easily be paused to regain situational
awareness during automation phases.

The study was designed as a within-subjects experiment, i.e., af-
ter completing the training phase, each participant ran through four
driving scenarios. The order of conditions was counterbalanced
by a Williams design Latin square (LS) [63]. The conditions were
randomly combined with the four aforementioned different driving
scenarios, such that every scenario appeared only once per partici-
pant and was combined with all conditions over all participants at
least once.

4.1.4 Procedure. First, participants were briefed about the experi-
mental procedure and their primary and secondary task. For their
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Figure 3: Example handover task with high criticality: the numbers in circles indicate discrete time steps of the same car in a
single critical scenario. The red car has to perform a lane change before entering a construction zone, where it has to take the
exit amid other traffic (indicated by the white car). The criticality of the situation can be further increased/decreased by the
factors listed and the discrete outcome can be used as a performance measure.

primary task, the experimenter explained HAD and the concept of
a handover to them. It was clearly stated that a beep always signals
a handover request, after which the participant will have enough
time to confirm the handover with a button press on the steering
wheel. The participants were intentionally not informed about the
technical background of the conditions, e.g., the role of the planner
and description logic. For the secondary task, the experimenter
explained the game 2048 [2] on a tablet and the participants could
try it out briefly. In the following training phase of the driving
simulator, participants could familiarize themselves with the han-
dover, the manual control of the car, the specific beep sound, and
the spoken instructions.

Afterwards, they were reminded of their task again, and the
study phase started. They experienced four handover scenarios and
after each trial, the participant filled in the Trust in Automation
Questionnaire (TiA) [34] and NASA Task Load Index (NASA TLX)
[25] on the tablet.

At the end, participants filled in a post-study questionnaire in
which some demographic data and their driving experience dur-
ing the experiment were assessed. Furthermore, they were asked
to rank the four handover conditions according to their personal
preference, and a short semi-structured interview about their rea-
sons for the ranking was conducted. Overall, the experiment lasted
approximately one hour per participant. During the experiment,
the participants’ handover behavior and the secondary task were
recorded from behind.

4.1.5 Apparatus. A three-monitor integrated driving seat for gam-
ing (InsideRace Sport Triple) with a Logitech G27 steering wheel
and pedals was used. One of the two paddle shifter buttons had to be
pressed to confirm the handover. The system was set to automatic
shifting so only the throttle and brake pedals had to be controlled.
The AirSim Simulator [52] ran on a PC with a 3.40GHz i7-6700 CPU,
24GB RAM, NVIDIA GeForce GTX 1080, and a modified version of
the Windridge City environment [1]. A tripod with a DSLR camera
was used for filming the secondary task interaction and driving
simulator screen only.

4.1.6 Variables & Hypotheses. The four conditions were used as
the four factor levels of the independent variable. The dependent
variables, trust in automation and workload, were measured with
the TiA [34] and the NASA TLX [25]. The TiA [34] consists of 19
items which are combined into the following six scales: Reliabil-
ity/Competence, Understanding, Familiarity, Intention of Develop-
ers, Propensity to Trust and Trust. The items are answered on a
5-point rating scale from 1 (= strongly disagree) to 5 (= strongly
agree). The unweighted NASA TLX [25] consists of the follow-
ing six subscales with a scale of 20 points and a total workload
over all six subscales: Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, and Frustration. Additionally, the
participants’ ranking order of the conditions was assessed, from 1
(= best) to 4 (= worst). Although we assessed the two questionnaires,
in this study we focus mainly on the qualitative results, since the
aim was to get the individuals’ opinions about the system to im-
prove the experimental paradigm for further studies. Thus, it was
assessed how the participants described their experiences in the
semi-structured interview.

Since the focus is on the qualitative results, the hypotheses for the
questionnaires are condensed. The workload as well as its subscales
are expected to be higher for the condition Notification Only than
for the other conditions. The trust in automation as well as its
subscales are expected to be higher in the conditionsAdvance Notice
+ Explanation and Advance Notice than in the other conditions. We
expect the condition Advance Notice + Explanation to be ranked
highest by most participants and the condition Notification Only
lowest.

4.2 Results
4.2.1 Quantitative Results. Participants rated their overall driv-
ing simulation experience during the study with a mean of 3.22
(SD = 0.90) on a 5-point Likert-like rating scale from 1 (= very
difficult) to 5 (= very easy). A multivariate analysis of variance
(MANOVA) revealed no significant overall difference between the
conditions; Pillai’s Trace = .41, F (36, 237) = 1.04, p = .422. Correla-
tions between dependent variables were low (r < .90), indicating
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that multicollinearity was not a confounding factor in the analysis
[59]. Since we had directed hypotheses, the between-subject effects
were still considered. For this, we chose Bonferroni adjustment,
which resulted in a p value of 0.004.

Levene’s test showed homoscedasticity for all subscales. Only
the subscale temporal demand of the NASA TLX turned out to differ
significantly between the four conditions, F (3, 88) = 5.08, Bonferroni-
adjusted p < .004. Participants rated the temporal demand higher
in the Notification Only condition (M = 6.57, SD = 4.34) compared
to the other three conditions (Advance Notice: M = 2.48, SD = 2.43;
Explanation: M = 5.53, SD = 3.74; Advance Notice + Explanation:
M = 5.35, SD = 4.11). Thus, participants felt more time-pressured in
the Notification Only condition.

The other scales from the NASA TLX and the TiA did not differ
significantly between the four conditions.

For the ranking of the four conditions (1 = best, 4 = worst), we
used a Friedman test which revealed a significant difference in the
ranking of the conditions, χ2(3) = 33.13, p < .001 with a moderate
effect size (Kendall’sW = .48); refer to Fig. 2. Notification Only, with
a median ranking of 4, was never chosen as the first. 16 participants
ranked it fourth. The ranks for the other three conditions ranged
from 1 to 4 and also showed a clear tendency of participants’ choice
towards their calculated median. Explanation showed a median
ranking of 3. The median ranking for Advance Notice was 2 and for
Advance Notice + Explanation it was 1. 13 participants ranked that
condition first and only one ranked it last.

For the post-hoc pairwise comparisons Bonferroni-Holm adjust-
ment was used for correcting the alpha levels, resulting in four
significant comparisons (see Table 1). The condition Advance No-
tice + Explanation was preferred over Notification Only (z = 1.91,
p < .001). Additionally, Advance Notice was preferred over Notifi-
cation Only (z = 1.74, p < .001). Furthermore, Advance Notice + Ex-
planation was ranked higher than Explanation, (z = 1.13, p = .003),
and Advance Notice was ranked higher than Explanation (z = 0.96,
p = .012). The first two comparisons showed medium effect sizes,
r = 0.40 and r = 0.36 respectively. The latter have small effect sizes,
r = 0.24 and r = 0.20 respectively.

4.2.2 Qualitative Results. For the qualitative evaluation we tran-
scribed the audio recordings into text and arranged the texts ac-
cording to the condition. Then, we compared the participants’ state-
ments on each condition based on similarities and differences ac-
cording to the hypotheses, grouped them content-wise, and finally
translated them into English. Notification Only was referred to as
“too fast”, “too sudden” or “too pressuring” by nine participants.
They described a feeling of not being able to adapt to the situation
because there was not enough time. Eight participants said that
only the beep is “not enough”, “too little” or there is “not enough
information.” One participant rated this condition to be “terrible”.
On the other hand, two participants rated this condition as “simple
enough”.

The condition Explanation, where at point B the explanation
appeared directly after the beep, was referred to as “the most com-
plicated” condition by two participants, as well as “distracting”. One
participant summarized: “At first, there was the beep and it was
clear I should take over, but then I forgot because the explanation
distracted me.” Another two were startled by this condition. Four

participants felt pressured or unsure in this situation. On the other
hand, one participant defined this condition in the ranking at the
end as “okay” and two others said it helped them focus.

The condition Advance Notice came out as the best in the semi-
structured interview at the end. One participant declared “it was
the clearest for me and also the easiest to understand” which sums
up six participants’ perceptions of this condition as “clear” and
“easy to understand”. Another three participants described it as
“efficient” and stated that they had “more trust” in this system. Five
participants felt more “prepared”. One participant preferred it to
the condition Advance Notice + Explanation because “this way I
could get an idea of the situation by myself.”

The combined conditionAdvance Notice + Explanationwasmostly
rated in the context of preparation and attention. 13 participants
felt “prepared”, said their “attention was more focused” or described
the system as “affirmative.” One participant summed it up this way:
“It was kind of reassuring, having the system telling you ‘Take care
about the car in front; it crossed the lanes multiple times.’” However,
eight participants, partially overlapping with the aforementioned
13, gave the remark that this condition takes “too long” or delivers
“too much information.”

4.3 Discussion
The ranking and the qualitative data strongly support our hypothe-
sis that the condition Advance Notice + Explanation are expected
to be ranked highest by most participants and the condition Notifi-
cation Only lowest. Unfortunately, only the significant difference
in the temporal demand subscale of the NASA TLX supported the
other hypotheses. Participants’ rating of their perceived workload
and most of its subconstructs, as well as their trust in the system,
did not differ significantly between the conditions. It is possible
that they really perceived no difference in their workload (and
its subconstructs) and trust in the system. One reason could be
the short timespan of the handover situation. Another possibility
for the absence of significance in the subscales of NASA TLX and
TiA (except for temporal demand) could be that due to the within-
subjects design, we only had one data point per participant per
condition. For future research, on the one hand, we suggest altering
the design: either using more handover situations in each condition
when using a within-subjects design, or using a between-subjects
design. On the other hand, one should also consider using different
constructs and questionnaires which point toward the direction of
safety rather than trust.

While the participants consciously ranked some conditions bet-
ter than others, this was only rarely shown in their self-assessed
workload and trust in automation. For Advance Notice + Expla-
nation a clear choice preference was visible since 13 participants
ranked it as the best condition. On the other hand, Notification Only
was never chosen as the best, but rather as the worst condition
by 16 participants. Additionally, Advance Notice was placed first
and second by eight and eleven participants, respectively, and was
only ranked fourth by one participant. Thus, Advance Notice + Ex-
planation and Advance Notice seem to be the best conditions for
signaling a handover. They led to the feeling of having had a good,
safe handover for our participants. In contrast, Notification Only
should not be considered for handover situations.
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z Z p-value alpha r

Advance Notice + Explanation vs. Notification Only 1.91 5.03 <.001 .008 0.40
Advance Notice vs. Notification Only 1.74 4.57 <.001 .01 0.36
Advance Notice + Explanation vs. Explanation 1.13 2.97 .01 .013 0.24
Advance Notice vs. Explanation 0.96 2.51 .003 .017 0.20
Explanation vs. Notification Only 0.78 0.78 .040 .025
Advance Notice + Explanation vs. Advance Notice 0.17 0.17 .648 .05

Table 1: Results for the pairwise comparisons using Bonferroni-Holm adjustment from lowest to highest p-value with the
adjusted alpha levels. The conditions were ranked from 1 = best to 4 = worst. χ2(3) = 33.13, p < .001, Kendall’sW = .48. z
(test statistic) = difference between the mean ranks from the Friedman test for the two groups, Z = standardized z-value, r =
effect size. Standard error = 0.38 for each comparison. Mean ranks of the conditions: M(Advance Notice + Explanation) = 1.70,
M(Advance Notice) = 1.87,M(Explanation) = 2.83,M(Notification Only) = 3.61.

One possibility for why Explanation and Notification Only were
seldom or never ranked first could be the time aspect. When the
driver suddenly hears the beep and has to react immediately, they
cannot plan their action beforehand; the same applies when, after
the beep, the explanation is presented during the actual handover.
Then, it could even be distracting from the handover. This was
supported by the participants’ statements in the semi-structured
interviews. The advance notice, on the other hand, gives a timely
notification, which is preferable for planning one’s actions. From
the participants’ statements, the impression was that they rated the
condition with only the advance notice better than the combined
condition, since the latter took “too long.” Some participants were
overwhelmed by the amount of information the system delivered.

The difference in the two conditions is that the Advance Notice
only tells the driver to focus on the road and warns them about the
upcoming handover (“Please pay attention to the road. In 15 seconds
you will get a handover request.”). The Advance Notice + Explanation
additionally gives an explanation of why the car in front shows
unusual driving behavior, which leads to a longer speech sequence
(“Be alert to the erratic red car ahead with 3 lane changes in the last 10
seconds. The driver may be ill or drunk. You are required to take over
before reaching the construction zone!”) This additional information
might shift the focus of the driver away from the actual upcoming
handover because they might try to validate the explanation given
by the system. To address this issue, one participant suggested that
the driver should only get more information if they want to, which
would depend on their trust in the system. Another participant
suggested two beeps as notification: “the first one for attention,
then the advance notice and then the other beep when one has to
take control.” These could be important improvements for further
research on the paradigm.

Overall, the results of this first study suggest a clear research
path for the explanation components of our system. The compo-
nents generating explanations should do so as concisely as possible,
extracting only the relevant facts about the current situation. The
handover realization component should emphasize shortening this
explanation even further, and using different modalities that are
easier to grasp. The combination of verbalization, visual cues, and
simple auditory signals should be chosen depending on a usermodel
that takes into account the user’s trust and awareness.

System 
Multimodal Handover 

Realization

Scene Generator

API Convention

User Interface
 

Simulator Handover 
Test Framework

• SAE Level 
• Vehicle Type  
• Complexity 
• Weather 
• Criticality 

Standard Baseline 
Training

• Familiarity with 
Handovers 

• Trust in the System  
• Manual Handling 

Ability 

Figure 4: Evaluation Framework for Handover Situations of
Cyber-Physical Systems

4.4 Problems and Limitations
Although we planned the study according to our power analyses
(with G*Power) that yielded 48 participants, only 23 were actually
tested because of the university shut-down due to the coronavirus
pandemic. The limited number of participants is also the reason
for the within-subject design. Given that all the participants were
rather young drivers, the age range limits the results of the study
as it might also affect the overall driving experience.

One participant told us in the semi-structured interview that they
were “getting more attentive” with each driving scenario, leading
to more focus on the driving simulator than on the secondary task.
To improve the paradigm, further studies that use the same design
should repeat each condition multiple times, which would lead to
more data points and habituation to the task.

5 FRAMEWORK DESIGN SUGGESTIONS FOR
HANDOVERS WITH EXPLANATIONS

Our study shows that there is a need for an evaluation framework
for handover situations with explanations, especially in HAD, be-
cause of the dimensionality of possible scenarios, output modalities,
system architectures and individual differences of users. In the au-
tomotive industry there exist international standards to evaluate
the manual handling performance of a vehicle with the double lane
change test (ISO 3888-2). However, with the introduction of HAD,
we think there is a need to assess the interaction with the autopilot
in a standard simulator setup, in which a controlled baseline can
be established. As a result of our qualitative evaluation, we found
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that there is a challenge in establishing the baseline with regard to
trust in the system and initial familiarity, i.e. the participants do
not have the knowledge of the developers, nor do they have a way
to assess the reliability of the system in the first place.

In the following, we outline a study framework and procedure as
a result of our evaluation of how handover situations for CPS could
be assessed in a more standardized way, to improve comparability
and validity of future studies (see Figure 4). The design of the
framework is driven by the question of what the system can or
cannot handle from the perspective of the user. Secondly, we need to
be able to quickly generate a variety of testing scenarios by simply
modifying parameters. And lastly, to be able to compare different
multimodal handover realizations and system implementations,
a standard API to exchange the core of the system’s behavior is
necessary.

There are different dependent variables here that can be assessed.
We used the TiA [34] and the NASA TLX [25] to assess trust in the
automated system and the perceived workload (including temporal,
physical, and mental demand as well as frustration), respectively.
Derived from the NASA TLX, another tool to assess cognitive load
while exercising a secondary task could be the Driver Activity Load
Index (DALI; [30, 46, 54]) because it is more tailored to the automo-
tive context. One possibility is to compare each condition with the
baseline, e.g. only driving. Another is to compare questionnaires
in the different conditions. Additionally, the usability of the sys-
tem can be assessed with the System Usability Scale (SUS; [8, 54]).
Llaneras, Salinger, and Green also evaluated trust in the system,
but additionally they assessed the “comfort with the system, per-
ceived vigilance and willingness to engage in secondary tasks” (p.
94, [38, 42]). They also assessed what kind of secondary task the
participants would be willing to perform. Thus, a possible indepen-
dent variable could be the secondary tasks or the (mental) demand
they take [15, 31]. As another perspective, objective measures can
be incorporated into the analysis as well, e.g. steering accuracy or
takeover time.

If different groups are assessed, then the best statistical analysis
would be comparing the means of the dependent variables between
the groups. Thus, depending on the number of dependent variables,
either a t-test would suffice, or a MANOVA should be taken into
account. For a more standardized baseline training, trust in the HAD
system is of the essence. The user has to know what the system is
capable and incapable of to develop a trusting attitude [20, 33, 37].
Therefore, a longer training phase is necessary. This way, the user
learns how the HADworks in critical situations, in which situations
it interferes and in which ways it shows support. Thus, they are
not taken by surprise in the study phase when it comes to using the
system. For our study framework, we suggest a standard baseline
training phase that consists of many common situations that would
normally appear during the main phase of the study. This has the
purpose of giving the user sufficient opportunity to get used to
not only the normal manual handling, e.g. steering the car, but
also what the autopilot can handle and what it cannot. We suggest
including situations with higher criticality which the autopilot is
still able to handle, to establish a baseline of trust in the system.

If the conducted study uses a within-subjects experimental de-
sign like we did, there should be more repetitions of each condition.
But from what we learned, we suggest a between-subjects design,

when the conditions vary as they do in our study. If the conditions
do not vary that much, e.g. only the length of the explanation of
the handover is altered, a within-subjects design is preferable.

As a first example for scene generation, we describe an example
scenario for HAD in this framework: we suggest approaching a
construction zone with the vehicle or driving simulator to induce
high criticality (see Figure 3). The explanation is given between A
and B, after which the actual handover occurs. The level of criticality
in this scenario can be varied, e.g., by the number of cars (traffic),
lane width, and reduced visibility (weather). The layout and location
of the construction zone should be varied slightly to avoid learning
effects.

In terms of the practicality of the system, the time between
notification and the critical situation depends on how far ahead
information can be collected. 30 seconds is around 300–800 meters
ahead at normal inner city speeds, which is already quite far. There
is known information from the map and prior 3D imaging but
current AI systems have only a partial real-time model of other road
users (e.g. Tesla Full Self Driving v9). If the static information can be
collected a priori from the traffic network, e.g. on the road situation
(traffic jam, etc.) and position of construction sites, the dynamic
information about the behavior of a car on the road ahead could
be received with the help of car-to-car communication. Certainly,
it is unrealistic to foresee 30s in advance that someone in close
proximity will run a red traffic light or drastically change their
behavior. So in contrast to “long-term” critical situations where we
will have time to explain more, there are more “short-term” ones
where a different notification is necessary. However, if a “short-
term” critical situation happens, the knowledge about new erratic
drivers must be transmitted to all cars at a certain distance, such
that an advanced notice can be generated for them instead.

The reliability of the systems for detecting critical situations
mostly builds on situation modeling, a car’s processor power to
run the methods formalizing the model, and availability of the
input data for these methods. And if, in the real world, the former
two are no longer a big issue, the latter point heavily depends on
how many users on a road have agreed to transmit information
collected by their cars. Making an automated decision in a setting
with partially available data about a road situation will be a major
research question in future work.

6 CONCLUSION
With the advance of highly automated driving and other cyber-
physical systems affecting humans, the design of suitable tech-
niques for handover from machine to human becomes more and
more pressing. Many such handover problems inherently require
advance notice (to the extent possible), as well as an explanation
of what is going on, to give the user context. The authors believe
that these two features inherently require world behavior models
and reasoning; certainly, it is natural to support the features in
this manner. Our user study shows promise and yields important
insights for the design of future studies.
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