
EGRAM - A GRAMMAR DEVELOPMENT ENVIRONMENT AND ITS
USAGE FOR LANGUAGE GENERATION

Stephan Busemann

DFKI GmbH
Stuhlsatzenhausweg 3, D-66123 Saarbrücken

busemann@dfki.de

Abstract
The development of large grammars is inherently complex and can hardly be achieved using standard text editors. Although, e.g., emacs
can be programmed to support this task to a certain extent, special-purpose functionalities are indispensable. Otherwise the increasing
effort for the development and maintenance of large grammars may severely limit their applicability. To avoid this pitfall in the field of
language generation, eGram has been developed, which provides a developer-friendly grammar format, syntactic verification of grammar
knowledge, abbreviations through metarules, and integration with grammar testing. eGram is a implemented in Java and available under
research or commercial licences.

1. INTRODUCTION
The development of large grammars is inherently com-

plex and can hardly be achieved using standard text edi-
tors. Although, e.g., emacs can be programmed to support
this task to a certain extent by defining dedicated “mod-
es”, special-purpose functionalities are indispensable, and a
graphical user interface is mandatory for many users. Oth-
erwise the increasing effort for the development and main-
tenance of large grammars consisting of several hundreds
or thousands of rules may severely limit their applicability.

Clearly, small grammars with 100 to 200 rules such as
the ones underlying the generation systems in (Busemann,
1996) and (Busemann and Horacek, 1998) could safely be
developed with standard text editors using the syntax ex-
emplified in Figure 1 below. However even in this work,
the lack of maintenance support and a considerable error-
proneness were observed.

To avoid this pitfall in the field of language generation,
the dedicated grammar development environment eGram
has been developed. With eGram the implementation of
a large grammar of a subset of German, which enabled the
generation of cross-lingual summary texts of medical sci-
entific reports from non-linguistic representations (Lenci et
al., 2002; Busemann, 2002), was achieved in a comfortable
and efficient way. The grammar comprises about 950 rules
with 135 categories, 134 test predicates, many access path
descriptions, and 14 features for constraints.

Major benefits of eGram include

� a developer-friendly grammar format (Section 2.),

� syntactic and semantic verification of grammar knowl-
edge (Section 3.),

� abbreviations through metarules (Section4.), and

� integration with grammar testing (Section5.).

2. GRAMMAR FORMATS
Grammar formats used by processing components are

often idiosyncratic and difficult to cope with. The ed-
itor of YAG requires the grammar writer to define Lisp

expressions (McRoy et al., 2000). This may create con-
siderable difficulties for linguists not used to bracket lan-
guages. Quite differently, eGram takes on the function-
ality of compiling its own, developer-friendly format into
the one needed by generation systems. Currently, two so-
called shallow language generation systems are supported:
TG/2 implemented in Lisp (Busemann, 1996) and XtraGen
(Stenzhorn, 2003), which is a sister Java implementation of
TG/2.

The generation grammar formalism supported by
eGram is based on the free combinations of pieces of pre-
fabricated text and non-terminal categories on the right-
hand side (RHS), thus implementing a continuum between
classical templates and context-free rules. The format is
augmented by feature-value pairs that can be percolated
through the derivation tree to control agreement relations.
The applicability of a rule is subject to boolean tests on
the generation input being fulfilled (cf. (Busemann, 1996)).
Thus the rules correspond to condition-action pairs, or pro-
duction rules.

For instance, the rule in Figure 1 is applicable to a given
input if the category to be generated from is DECL and if the
input follows some pattern called s2, if it specifies a “deep
subject”, and if active voice is acceptable. The rule has four
RHS elements, which define an argument (the subject), the
finite verb, another argument (the direct object) and option-
ally an infinite verb constituent. The part of the input fea-
ture structure relevant when applying a particular rule is ac-
cessed using the feature path descriptions derived from ex-
pressions like ’deep-subj. The rule has the context-free
backbone (DECL -> ARG, FIN, ARG,

�
INF �). The

variables starting with X determine the assignment of the
feature constraints to the RHS elements. For instance, the
subject and the finite verb agree in number and person. The
rule can be used with transitive verbs, as in Die Firma hatte
364 Arbeiter beschäftigt. [The company had employed 364
workers].

Such a generation step forms an element of the follow-
ing algorithm, which consists of the classical three-step in-
terpretation cycle of production systems. Generation starts
from a category C and a (piece of) input structure. First, a

(defproduction "s2 top-subj.1"
(:PRECOND (:CAT DECL

:TEST ((sbp ’s2) (top-deep-subj ’y) (vc-voice ’active)))
:ACTIONS (:TEMPLATE (X1 :RULE ARG ’deep-subj)

(X2 :RULE FIN ’verb-complex)
(X4 :RULE ARG ’deep-acc-obj)
(X5 :OPTRULE INF ’verb-complex)

:CONSTRAINTS (X1.CASE := ’nom
X4.CASE := ’acc
X1.NUMBER = X2.NUMBER = X5.NUMBER
X1.PERSON = X2.PERSON = X5.PERSON))))

Figure 1: A rule for the German transitive main clauses as processed by TG/2.

conflict set is identified by selecting all rules that have C on
their LHS and whose tests are fulfilled. Second, one rule
is selected from the conflict set. Third, the selected rule is
applied by recursively generating from each RHS element,
when C is set to the element’s category, and the piece of
input structure according to the element’s path description
is selected. If a generation step fails, the algorithm back-
tracks by selecting another rule from the conflict set. If the
conflict set is empty, it backtracks to the next higher level.

It should be noted that the formalism boils down to
context-free grammars when feature constraints and tests
are left unspecified.

Further elements of the formalism also covered by
eGram, but not discussed further in this paper, include

� use of interface functions in rules to trigger external
components (e.g., morphological inflection),

� the specification of meta symbols expanding into ei-
ther HTML, LaTeX or ASCII formatting directives,

� a preference assignment for the elements of the con-
flict set, guiding step 2 of the interpretation cycle.

3. DESIGN PRINCIPLES AND
CONSISTENCY ISSUES

A major difficulty in the course of developing com-
plex grammars is to maintain consistency. Every-day prac-
tice shows that features used are sometimes not defined,
values are not sufficiently restricted, or certain categories
do not occur in any other rule. When such grammars
are interpreted, errors occur that can be difficult and time-
consuming to trace. eGram verifies that every new piece of
grammar knowledge is fully consistent with what already
exists, thus eliminating many obvious sources of mistake.

eGram was designed to enforce a consistent way of
defining grammar objects by allowing the definition of
complex objects only after all their elements are defined.
Before a rule may be entered, the categories, test predicates,
access paths and constraints used must be defined. The GUI
offers dynamically generated menus for more complex el-
ements in addition to textual input windows, where these
remain necessary. For the definition of e.g. a constraint, a
menu would offer all defined features, and for the selected
feature, all defined values. Definitions of test predicates
must be entered as text.

Different working styles are supported: either the user
pro-actively plans her work by first defining all low-level
elements and then proceeding to higher-level ones, or she
prefers to add missing elements “on the fly”, i.e. when
eGram complains.

Defining a set of similar elements such as categories or
features quickly is supported by options that save defini-
tions without closing the window, allowing existing entries
to be reused for editing.

eGram’s main pane contains a set of tabs corresponding
to the different elements. Clicking on a tab opens a new
screen with all the tabs remaining available at any moment
(see Figure 2). A set of tabs opens separate subpanes al-
lowing for the definition of the tests, RHS elements, and
constraints of rules.

Moving from basic to more complex elements together
with the dynamic menu based methodology minimises er-
rors. Definitions are guaranteed to be syntactically com-
plete.

Although correctness at the semantic level can not be
ensured in general, eGram has built-in means to control
some effects of definitions. For every element that occurs
as part of other elements – e.g. a category occurring in dif-
ferent rules – the containing elements can be visualised.
This way the rules applicable to a given category can be
overviewed and inspected. In addition, derivations induced
by the context-free backbone can be interactively expanded
and visualized as a tree. The choice of applicable rules is
left to the user. The effects of feature percolation through
the derivation tree can be visualized by coloured links be-
tween the nodes involved. This way, the user can easily
detect missing or ill-formed constraints.

4. METARULES
As the kind of grammars encoded in eGram involves

a context-free backbone, rules cannot easily express cer-
tain linguistic phenomena, such as word order variation,
pronominalization, voice, the relation between sentential
structures and relative clauses, or verb positions. To express
these phenomena, several hundreds if not thousands of dif-
ferent rules must be defined. Every-day practice involces
copy-and-paste approaches that are error-prone. Moreover
such phenomena are often captured only partially, leaving
unexpected gaps in the coverage of the grammar.

eGram is equipped with a metarule mechanism that is
technically similar to that of Generalized Phrase Structure

Figure 2: A Screenshot of eGram with the Rule Pane Active. It displays a simple NP rule for German. The feature
constraints express various agreement relations. The variable X0 refers to the mother node. The rule window can be
dragged to some other location on the screen, allowing to view multiple objects at the same time. The rules names shown
on the left-hand side can be filtered by the elements contained in the rules. For instance by selecting category NP, only the
rules with NP as their LHS category are shown.

Grammars (Gazdar et al., 1985). Metarule expansion starts
with a set of base rules and then applies to the set of base
rules and derived rules. The derivational history of a de-
rived rule may contain each metarule at most once, thus
guaranteeing termination of the expansion process. Like
in GPSG, the metarule mechanism does not augment the
power of the formalism, i.e. if the base rules are context-
free, the set of derived rules will be context-free as well.
Linguistic phenomena are conveniently encoded by base
rules and metarules, leaving comparably less coding work
for the grammar writer.

A metarule consists of a LHS defining a pattern for in-
put rules, and a RHS specifying the resulting rule(s) for
each matched input rule. Clearly the resulting rule will
contain components of the input rule, but also skip compo-
nents or introduce new components. Reused components
are bound by variables on the LHS that are used on the
RHS, skipped components are specified on the LHS and ig-

nored on the RHS, and new components are specified only
on the RHS.

The user can control the applicability of metarules by
restricting the allowed derivation histories of derived rules.
In order to suppress unwanted derivations, metarule appli-
cation can be limited to base rules only or after some other
metarules have been applied.

Derived duplicates should be removed since they do
not add to the coverage of the grammar, but simply intro-
duce spurious ambiguities. eGram recognizes duplicates
and eliminates them. Rules differing only wrt. their tests
are combined by using a disjunction on the tests.

Derived rules cannot be edited in eGram. Rather the
underlying base rules or the metarules must be modified.

The basic metarule mechanisms and their integration
into eGram are described in detail in (Rinck, 2003). A re-
design of the grammar mentioned led to a reduction of the
950 rules to 569. Applying to these base rules 19 metarules

modelling the above phenomena resulted in 2.435 derived
rules, demonstrating that the original grammar did not sys-
tematically cover all the phenomena represented by the
metarules.

5. INTEGRATION WITH GENERATION
SYSTEMS

Although eGram knows about the logical dependencies
between the elements of the formalism, can show the user
in which parts of a grammar an element is used, supports
the interactive generation of derivation trees these mecha-
nisms cannot replace online testing through the generation
components.

Integrating grammar development and grammar testing
is crucial to verify the effects of modifying a grammar.
eGram is integrated with TG/2 via a client-server interface
and with XtraGen via a Java API. Since both systems use
different input formats – XtraGen uses XML encodings of
grammars, whereas TG/2 uses expressions as shown in Fig-
ure 1 – eGram provides suitable export formats for both.
Calls to the generators can be issued from within eGram.
A call to a running generation system consists of an input
structure that can be defined within eGram, and the modi-
fications of the grammar since the last call. The generator
either returns the generated string or an error message.

Ongoing development concentrates on rendering the in-
terface between eGram and the generation systems sup-
ported more comfortable. In particular, processing errors
of the generation systems should be interpreted in a useful
manner. First steps have been implemented.

In many cases the error usually occurs at different loca-
tion in the derivation tree than the object causing the error
was used. The ultimate goal is to pinpoint the grammar
object that most likely caused a derivation to fail. Typi-
cal errors include missing feature specifications, the failure
of two features to unify, the failure to apply any rule for a
given input, and the non-existence of expected input.

6. CONCLUSION
eGram successfully answers the need for a comfortable

editor for large sets of context-free grammar rules that op-
tionally can be augmented with feature constraints and with
conditions on applicability. It ensures that grammars are
syntactically correct,

eGram provides a formalism for metarules, applies
metarules recursively according to a specified order, and
it checks for, and removes, derived duplicates. These algo-
rithms are to our knowledge completely novel and render
metarules manageable in practice. incorporates a practi-
cally useful mechanism for metarules and integrates gen-
eration functionality for grammar testing. eGram is imple-
mented in Java and can be licensed for research and com-
mercial purposes.

ACKNOWLEDGMENTS
This work has partially been funded by the European

Union under contracts no. MLIS-5015 to the project MUSI
and no. IST-2000-25045 to the project MEMPHIS. I am in-
debted to Ana Água, Tim vor der Brück and Matthias Rinck

who implemented large parts of the eGram system. I also
thank Joachim Sauer, Holger Stenzhorn and Feiyu Xu for
fruitful discussions and for their collaboration.

7. References
Stephan Busemann and Helmut Horacek. 1998. A flex-

ible shallow approach to text generation. In Ed-
uard Hovy, editor, Nineth International Natural Lan-
guage Generation Workshop. Proceedings, pages 238–
247, Niagara-on-the-Lake, Canada. Also available at
http://xxx.lanl.gov/abs/cs.CL/9812018.

Stephan Busemann. 1996. Best-first surface realization.
In Donia Scott, editor, Eighth International Natural
Language Generation Workshop. Proceedings, pages
101–110, Herstmonceux, Univ. of Brighton, England.
Also available at the Computation and Language
Archive at http://xxx.lanl.gov/abs/cmp-
lg/9605010.

Stephan Busemann. 2002. Language generation for
cross-lingual document summarisation. In Huanye
Sheng, editor, International Workshop on Innova-
tive Language Technology and Chinese Informa-
tion Processing (ILT&CIP-2001), April 6-7, 2001,
Shanghai, China, Beijing, China. Science Press,
Chinese Academy of Sciences. Also available at
http://www.dfki.de/lt/publications/
index.php3.

Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan
Sag. 1985. Generalized Phrase Structure Grammar.
Basil Blackwell, London.

Alessandro Lenci, Ana Água, Roberto Bartolini, Stephan
Busemann, Nicoletta Calzolari, Emmanuel Cartier,
Karine Chevreau, and José Coch. 2002. Multilingual
summarization by integrating linguistic resources in the
MLIS-MUSI project. In Proc. Third International Con-
ference on Language Resources and Evaluation (LREC),
pages 1464–1471, Las Palmas, Canary Islands, Spain,
May.

Susan W. McRoy, Songsak Channarukul, and Syed S. Ali.
2000. Text realization for dialog. Bangkok, Thailand,
December. Also in Working Notes of the 2000 AAAI
Fall Symposium on Building Dialogue Systems for Tuto-
rial Applications, North Falmouth, MA, November 2000.

Matthias Rinck. 2003. Ein Metaregelformalismus für
TG/2. Master’s thesis, Department for Computational
Linguistics, University of the Saarland.

Holger Stenzhorn. 2003. XtraGen. A natural language
generation system using Java and XML technologies.
Master’s thesis, Department for Computatinal Linguis-
tics, University of the Saarland.

