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Abstract. The hyperparameter configuration of machine learning mod-
els has a great influence on their performance. These hyperparameters
are often set either manually w. r. t. to the experience of an expert or
by an Automated Hyperparameter Optimization (HPO) method. How-
ever, integrating experience knowledge into HPO methods is challeng-
ing. Therefore, we propose the approach HypOCBR (Hyperparameter
Optimization with Case-Based Reasoning) that uses Case-Based Rea-
soning (CBR) to improve the optimization of hyperparameters. HypOCBR
is used as an addition to HPO methods and builds up a case base of
sampled hyperparameter vectors with their loss values. The case base is
then used to retrieve hyperparameter vectors given a query vector and
to make decisions whether to proceed trialing with this query or abort
and sample another vector. The experimental evaluation investigates the
suitability of HypOCBR for two deep learning setups of varying complex-
ity. It shows its potential to improve the optimization results, especially
in complex scenarios with limited optimization time.

Keywords: Case-Based Reasoning · Automated Hyperparameter Opti-
mization · Machine Learning · Deep Learning

1 Introduction

In recent years, machine learning and especially Deep Learning (DL) models
have been used as a method of choice for solving various tasks, e. g., in decision
support systems [18] and in helpdesk scenarios [2]. An important part of these
models are the hyperparameters that are used to configure the model architec-
ture or the learning process such as the number of layers or the learning rate.
Hyperparameters are numerous in modern DL setups and there is an ongoing
trend towards even more complex models, making it increasingly difficult to find
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suitable configurations for the large number of hyperparameters. Despite the ex-
istence of Automated Hyperparameter Optimization (HPO) methods [7,9,16], it
is still common practice to tune these hyperparameters manually based on user
experience. This task is, on the one hand, challenging since it requires in-depth
knowledge of the underlying task and DL setup to set hyperparameter values
appropriately. On the other hand, it is time-consuming as the process involves
manually triggered iterations of selecting a hyperparameter configuration, train-
ing the parameterized model, and validating its performance. Whereas the latter
aspect can be automated even by the simplest HPO methods, expert knowledge
of the DL setup to be tuned can be hardly considered in current HPO methods
(e. g., [8,12,15]). For instance, there might be knowledge in the form of a state-
ment such as this: The second convolutional layer has a great influence on the
overall results. To use this knowledge in current HPO approaches, it would be
necessary to transform it into meta-parameters of the HPO method, such as the
number of sampled hyperparameter vectors. However, this transformation is not
trivial and requires in-depth knowledge of the HPO method, which the neural
network modeler might be lacking.

To address these shortcomings, we propose an approach called HypOCBR
(Hyperparameter Optimization with Case-Based Reasoning) for combining
HPO methods with a Case-Based Reasoning (CBR) [1] system that allows an
explicit integration of expert knowledge into optimization procedures. The main
assumption is that similar hyperparameter vectors lead to similar optimization
results. Based on this assumption and modeled domain and similarity knowledge
that expresses an expert’s experience knowledge, HypOCBR uses a CBR sys-
tem to filter sampled hyperparameter vectors from an HPO method and make
decisions to proceed training with them or abort them. The proposed approach
is designed to be used as an extension of existing HPO methods without re-
quired modifications to their core functionality. The remainder of the paper is
structured as follows: Section 2 describes the fundamentals of HPO, including
the hyperparameters of an example DL model and random search as a popu-
lar HPO method. Additionally, this section discusses related work about HPO
in CBR research. Section 3 describes our approach by introducing the proposed
system architecture and the used retrieval and decision-making process. The pre-
sented approach is evaluated in Sect. 4 where optimization procedures with and
without CBR methods are compared on two DL setups of varying complexity.
Finally, Sect. 5 concludes the paper and examines future research directions.

2 Automated Hyperparameter Optimization of Deep
Learning Models

Our approach aims at optimizing Deep Learning (DL) models with the help of
Case-Based Reasoning (CBR) methods that are built on top of existing Auto-
mated Hyperparameter Optimization (HPO) methods. In this section, we intro-
duce the formal concepts and terminology of HPO (see Sect. 2.1). Additionally,
different types of hyperparameters (see Sect. 2.2) are examined and random
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search, a popular HPO method (see Sect. 2.3), is presented. We further discuss
related work in Sect. 2.4.

2.1 Formal Definition

Hyperparameter optimization involves two basic components in its simplest
form, i. e., a training setup of a DL model including its hyperparameters and
training data, and a search procedure for selecting a hyperparameter vector from
the hyperparameter search space. Our introduction and notation of these com-
ponents follows Feurer and Hutter [9]: A DL model A is parameterized by a set of
hyperparameters N , where each hyperparameter n ∈ N is defined by its domain
Λn. The overall hyperparameter search space is given by Λ = Λ1 ×Λ2 ×Λn. We
denote λ ∈ Λ as a hyperparameter vector that represents a distinct sample from
the hyperparameter search space. Instantiating the model A with this sample is
denoted as Aλ. The optimization procedure is defined as follows:

λ∗ = argmin
λ∈Λ

L(Aλ,D) (1)

Thereby, the optimal hyperparameter vector λ∗ ∈ Λ is determined by selecting
a hyperparameter vector λ ∈ Λ that minimizes the loss function L(Aλ,D). The
loss value is the result of training Aλ and validating its performance on the
dataset D. Therefore, D is usually split up into a training dataset for training Aλ

and a validation dataset for computing the loss value. We refer to the training,
validation, and loss computation with a single hyperparameter vector by the
term trial. Please note that instead of loss values, which are always minimized,
also other metrics, e. g., classification accuracy, can be used for optimization
according to Eq. 1. The only necessary change is to compute argmax(·) instead
of argmin(·) in some cases. When referring to loss values in this paper, we mean
both types, i. e., metrics to minimize and to maximize.

2.2 Hyperparameter Search Spaces

The computational effort of an optimization as shown in Eq. 1 is mainly de-
termined by the number of possible hyperparameter vectors |Λ| and the time
needed to perform trials with the parameterized models. But, even if the train-
ing time is small and it is a simple DL setup, Λ can become very large and the
whole optimization process very slow. Consider the following example3: A DL
setup for image classification is made up of two consecutive layers of convolution
followed by pooling. The convoluted images are then flattened, i. e., reshaped to
a one-dimensional vector, and fed into several fully-connected layers. The final
output is a vector of ten elements that represents the probabilities for the indi-
vidual classes of a classification task. The model is trained by processing batches
of images and applying stochastic gradient descent according to the computed
loss. A possible hyperparameter search space for this example setup is illus-
3The example is derived from an introduction on convolutional neural networks, acces-
sible at https://www.tensorflow.org/tutorials/images/cnn.

https://www.tensorflow.org/tutorials/images/cnn
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Hyperparameters

Model

Convolution1

Channels: int(20, 40)

KernelWidth: int(2, 4)

PoolWidth: int(2, 3)

Convolution2

Channels: int(40, 80)

KernelWidth: int(2, 4)

PoolWidth: int(2, 3)

FullyConnected

Layers: int(2, 5)

Neurons: int(40, 80)

UseDropout: categorical(true, false)

Training

LearningRate: float(0.001, 0.1)

Optimizer: categorical(Adam, SGD)

Epochs: int(10, 20)

Fig. 1. Example Hyperparameter Search Space

trated in Fig. 1. The hyperparameters are structured hierarchically, with model
and training hyperparameters forming the main groups. Each hyperparameter
belongs to a certain type of search space (Λn) and is constrained to certain val-
ues. For instance, the number of channels in the first convolution is an integer
value between 20 and 40 and the learning rate is a float value between 0.001 and
0.1. These types of search spaces influence the number of possible values of each
hyperparameter. For instance, categorical and integer hyperparameters such as
the optimizer or the number of channels represent a definitive set of possible
values. Continuous search space types such as the learning rate, in turn, have
an infinite number of theoretically possible values, assuming an infinitely small
step size. This makes it infeasible to trial with every possible hyperparameter
vector to compute argmin(·) and to find λ∗ [6].

2.3 Random Search

Therefore, most search algorithms only examine a small subset of Λ that does
not guarantee finding the optimal hyperparameter vector [9]. Random search
(see Alg. 1 and cf. [6] for more information) is a simple example of these algo-
rithms. The algorithm is an approximation of the function argmin(·) from Eq. 1
and works in the following way: Random hyperparameter vectors λ are selected
from Λ by the function selectFrom(·) and trialed. If the loss of the selected
sample is smaller than the loss of the current best hyperparameter vector λ+,
λ will be assigned to λ+. This loop repeats until the search is finished (func-

Algorithm 1 Random Search
1: λ← selectFrom(Λ)
2: λ+ ← λ
3: while not isOptimized(λ+,L) do
4: λ← selectFrom(Λ)
5: if L(Aλ,D) < L(A+

λ ,D) then
6: λ+ ← λ
7: end if
8: end while
9: return λ+



Automated Hyperparameter Optimization with CBR 5

tion isOptimized(·, ·)) and the best selected sample λ+ is returned. The used
termination criterion is dependent on the underlying scenario and can be, for
instance, the maximum search time, the maximum number of selected samples,
or a threshold of the loss value. If random search has an unlimited budget, it
will converge towards λ+ being equal to the optimal hyperparameter vector λ∗.

2.4 Related Work

We discuss related work that covers popular HPO methods and CBR approaches
in the field of HPO. Literature from the former category is discussed in detail in
several survey publications (e. g., [9,16,26]), which is why we only want to high-
light two popular example approaches: Multi-fidelity optimization aims at ap-
proximating the actual loss value of a setup by conducting low-fidelity and high-
fidelity optimizations with a specific budget allocation, e. g., a maximum number
of training iterations. Hyperband [15] uses an iterative process where the budget
for each trial is determined based on the results of this run in the last iteration.
Well-performing runs are allocated more resources and poorly-performing runs
are terminated, until only the best-performing optimization is left. Model-based
black box optimization methods aim to improve on other methods, e. g., Hyper-
band, that usually sample random hyperparameter vectors. Instead, promising
hyperparameter vectors are chosen based on a surrogate model that is built dur-
ing the optimization to copy the hyperparameter distribution of the black box
method to optimize, e. g., a DL model. Bayesian optimization [24] methods use
a surrogate model that is based on probabilistic methods, e. g., Gaussian pro-
cesses. Our approach is compatible with both categories of HPO methods and,
additionally, provides the opportunity of expert knowledge integration into the
optimization process. Expert knowledge is directly integrated as CBR domain
and similarity knowledge instead of being indirectly modeled in existing HPO
methods.

The joint applications of CBR and HPO methods in literature are mostly con-
cerned with hyperparameter tuning of CBR algorithms, e. g., feature weighting
[25]. The opposite relation of CBR used for HPO is, to the best of our knowledge,
not commonly discussed. We highlight some selected approaches: Pavón et al.
[20] use CBR to enable automatic selection of Bayesian model configurations for
individual problem instances. Their application builds up a case base of config-
urations, which is used to find the best-matching configuration for an upcoming
problem instance. This idea is further pursued by Yeguas et al. [27] and applied
to the task of tuning parameters of evolutionary optimization algorithms. Aus-
lander et al. [3] explore a case-based approach of setting parameter values in the
scenario of multi-agent planning. They retrieve parameter settings from a case
base to parameterize upcoming planning problems. Molina et al. [19] use a set of
past decision tree executions to predict suitable parameters for the application
of the decision tree on new datasets. The parameter settings are retrieved based
on the characteristics of the datasets. In contrast to the approach in this paper,
most of the presented approaches can be classified as AutoML methods [13] that
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are used as a replacement for hyperparameter optimization. These methods au-
tomatically select a model configuration according to the training data or the
learning task instead of tuning parameters from scratch. Our approach is novel
in the sense that it aims to integrate CBR within the optimization procedure
to make expert knowledge about the hyperparameter search space available and
guide the optimization by eliminating unpromising hyperparameter vectors.

3 Automated Hyperparameter Optimization with
Case-Based Reasoning

This section introduces our approach HypOCBR (Hyperparameter Optimization
with Case-Based Reasoning) that aims at improving Automated Hyperparameter
Optimization (HPO) of Deep Learning (DL) hyperparameters with Case-Based
Reasoning (CBR) methods. Our goal is to accelerate the optimization process
by utilizing HypOCBR as a filter for the hyperparameter vectors that classifies
whether a vector should be considered for trialing or not. Thereby, the strategy is
to disregard hyperparameter vectors in situations where they are highly similar
to known low-performing examples that are collected in a case base throughout
the optimization procedure. Figure 2 shows an architectural overview of the three

CBR System

Domain
Model

Similarity
Model

Retrieve/Reuse

HPO Method

Case Base

updates

Revise/Retain

Sampling

Training

Validation

Decision

Reporting

uses

uses uses

HypOCBR

Fig. 2. Architecture of the CBR system, the HPO method, and HypOCBR

involved components, i. e., the CBR system, the HPO method, and HypOCBR.
The HPO method carries out the optimization procedure by sampling hyperpa-
rameter vectors from the search space, performing training, and validating the
model’s performance (see Sect. 2.3). The architecture, in this regard, allows us-
ing arbitrary HPO methods, since their functionality does not have to be fitted
to HypOCBR. The CBR system supports the optimization procedure by main-
taining a case base with completed trials of hyperparameter vectors and their
corresponding loss values as well as domain and similarity models to include
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domain expert knowledge. HypOCBR connects the CBR system and the HPO
method by making use of a lightweight implementation of the 4R cycle [1]: After
a new hyperparameter vector is sampled during the optimization, HypOCBR
makes a decision to proceed with this vector or abort it early and sample an-
other vector. Each sampled vector serves as a query to the CBR system based
on which the case base is searched for similar hyperparameter vectors and their
corresponding loss values, i. e., retrieving trials. HypOCBR then reuses the most
similar trials and makes the decision based on their loss values. Please note that
the retrieved hyperparameters are not adapted but their loss values are used
to assess the potential of the queried hyperparameter vector. Each optimization
gradually builds up a case base to use by starting with an empty case base and
retaining each completed trial therein. Thereby, we do not consider an explicit
revision of cases in the approach but rather store all reported validation results
from the HPO component. Please note that this can lead to large case bases in
long optimization runs, such that methods for speeding up retrieval (e. g., [17])
or decreasing the size of the case base (e. g., [22]) can be necessary but are not
further discussed in this work. In the following, we will examine how a retrieval in
the CBR system is performed by inspecting the case representation as well as the
similarity definitions (see Sect. 3.1). The retrieval is part of the decision-making
process of HypOCBR that is explained in Sect. 3.2.

3.1 Experience-Based Retrieval: Case Representation and
Similarity Definition

The case representation models trials as pairs of their hyperparameter vector and
the respective loss value. The case base, in this regard, stores information on the
quality of hyperparameter vectors that were sampled during the optimization.
The hyperparameter vectors are represented as object-oriented cases, as shown
by the example in Fig. 1. The domain model describing these vectors is one point
to integrate expert knowledge. The concrete form is highly dependent on the
structure of the modeled hyperparameter vectors. For instance, simple knowledge
about the data types, value ranges, and expected distributions of individual
hyperparameters (see Sect. 2.2) can build the baseline. It can be extended by
knowledge about the structure of individual hyperparameters (e. g., taxonomies
of optimizer types) or the constraints among hyperparameters (e. g., the width of
the kernel has to be less than the image width and height). Even more complex
knowledge such as ontologies can be used to model the cases. The loss value that
is also part of each case, usually is a single numeric value, e. g., accuracy, but
can also be represented as a more complex object, e. g., a list of accuracy values
from each epoch of training.

During retrieval, similarities are computed between the hyperparameter vec-
tors of the cases and the hyperparameter vector that is given as the query by
HypOCBR. We do not specify the similarity measures to use, but rather allow
them to be customized regarding the use case and the available expert knowl-
edge. Thereby a global object-oriented similarity between two hyperparameter
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vectors is usually put together from multiple local similarities between the in-
dividual hyperparameters, e. g., numeric measures for integer and float search
spaces, binary measures for boolean search spaces, and tables or taxonomies for
categorical values (cf. [4, pp. 93f.] for more information). This enables a precise
customization of the global pairwise similarity based on the expert’s experience:
For instance, the weights of all hyperparameters from the training category (see
Fig. 1) can be increased to focus more on this part of the hyperparameter vectors
for similarity assessment.

3.2 Making a Decision for New Trials

The decision task of HypOCBR applies an algorithm to make a decision be-
tween proceeding with a sampled hyperparameter vector or aborting the trial.
The used approach is conceptualized in Alg. 2 and can be parameterized ac-
cording to the well-known principles of exploration and exploitation (see, for
instance, Leake and Schack [14] for more information). This means that it can
be configured towards favoring hyperparameter vectors that are different from
all previously encountered vectors (exploration) or similar to known good hyper-
parameter vectors (exploitation). The meta-parameters to influence the behavior
of the algorithm are given in Tab. 1.

The algorithm’s first step is to check if the case base has reached a certain
size (lines 1 – 3) which is given as the meta-parameter θ1. This check is necessary
as a case base is built up throughout the optimization to improve the quality of
upcoming decisions. The case base, however, suffers from the cold start problem

Algorithm 2 Decision-Making for New Trials
Input: case base CB, similarity function sim(·, ·), query λq

Output: PROCEED or ABORT
Meta-Parameters: θ1, θ2, θ3, θ4

1: if |CB | < θ1 then
2: return PROCEED ▷ Minimum size of case base not reached
3: end if
4: r ← retrieve(CB, sim, λq, θ4)
5: s← aggregateSimilarities(r)
6: if s ≥ θ2 then
7: l← aggregateLosses(r)
8: p← percentile(l,CB, θ3)
9: if p = true then

10: return PROCEED ▷ Exploitation
11: else
12: return ABORT ▷ Similar to underperforming cases
13: end if
14: else
15: return PROCEED ▷ Exploration
16: end if
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[23] which can cause undesired behavior in CBR systems with little or no data at
the launch of the application (e. g., [21]). If the case base has reached the desired
size, it can be used for retrieving r (line 4) with the query λq, the case base
CB, and the similarity measure for case pairs sim. The retrieval incorporates
the meta-parameter θ4 that defines the number of nearest neighbors to retrieve.
Larger values of θ4 help to prevent overfitting and make the retrieved cases
more robust to outliers. These cases are then used to compute an aggregate
similarity value s that measures how similar λq is to the retrieved cases from the
case base r (line 5). The aggregated similarity is computed to ensure that the
retrieved cases are sufficiently similar to make a decision. The retrieval is also
the main part of the algorithm where expert knowledge is used. It determines
the computed similarities, which direct the algorithm to the hyperparameter
vectors and their loss values that, in turn, best match the queried vector. As the
retrieved cases are the basis of the decision, the knowledge directly influences the
measured potential of the query vector. If s does not exceed θ2 (line 6) then the
exploration strategy is followed and PROCEED is returned (see line 15). Otherwise,
the retrieved cases are further inspected in lines 7 – 13. The loss values of the
retrieved cases are aggregated to l (line 7) to get an average loss of the cases
that are similar to the query. Given l, the case base CB, and the meta-parameter
θ3 as parameters, the function percentile(·, ·, ·) in line 8 returns a boolean value
that expresses if the average loss value l is in the percentile range given by θ3.
For instance, setting θ3 to a value of 55 expresses that p is true if l is among
the best 45 % of the loss values in the case base. This gives a hint towards the
potential quality of λq which is based on the average quality of cases similar to λq

(retrieved cases r) w. r. t. to all cases in the case base CB. Eventually, PROCEED
is returned if p is true (exploitation strategy; line 9) and ABORT is returned if p
is false. The algorithm only aborts in one particular scenario, which highlights
the main goal of the filter process, i. e., to abort trials if they are expected to
lead to bad results.

Table 1. Meta-Parameters of HypOCBR

Meta-
Parameter Description Constraints

θ1 Minimum number of cases in the case base to avoid cold
start

θ1 > 0

θ2 Minimum similarity threshold of aggregated retrieved cases θ2 ∈ [0, 1]
θ3 Minimum percentile of aggregated metric of retrieved cases θ3 ∈ [0, 100]
θ4 Number of cases to retrieve θ4 <= θ1

Furthermore, the meta-parameters (see Tab. 1) provide a straightforward way
of configuring the behavior of the algorithm w. r. t. certain goals. For instance, it
can be configured towards exploration by increasing θ2 which requires a higher
similarity of retrieved cases. A parameterization towards an ABORT decision is
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also possible by decreasing θ2 and increasing θ3. Additionally, pretests of an im-
plementation of Alg. 2 with standard similarity measures of the process-oriented
CBR framework ProCAKE [5] have shown that the performance is adequate, en-
abling working with case bases containing hundreds or thousands of trials within
a few milliseconds.

4 Experimental Evaluation

The experimental evaluation compares the results and procedure of hyperparam-
eter optimization with and without the usage of the proposed Case-based Reason-
ing (CBR) component HypOCBR. To include optimization tasks with different
levels of complexity, we evaluate a rather simple baseline setup of an image clas-
sification task and a much more complex similarity learning task based on Graph
Neural Networks (GNNs). The goal is to analyze the influence of HypOCBR on
the number of sampled hyperparameter vectors and the loss values of the trialed
cases. The following hypotheses are examined:

H1 The computation overhead introduced by HypOCBR is negligible.
H2 The usage of HypOCBR in an optimization procedure leads to better

results compared to an identical optimization without it.
H3 The benefit of integrating HypOCBR in an optimization procedure in-

creases with the complexity, i. e., longer running trials with less overall
optimization budget, of the setup to optimize.

Hypothesis H1 addresses the computation overhead introduced by the CBR sys-
tem, which is expected to not influence the completed number of trials compared
to HPO without HypOCBR. Hypothesis H2 examines the potential of the pre-
sented approach to conduct better trials w. r. t. their loss values. Hypothesis H3
aims at investigating the influence of the setup complexity on the benefit of
HypOCBR.

4.1 Experimental Setup

The experiments feature two Deep Learning (DL) setups. The baseline setup
(S - I) is a convolutional neural network classifying CIFAR10 images (derived
from the example in Sect. 2.2). The model is fully trained for ten epochs within
one optimization run with the goal of maximizing the percentage of correctly
classified images (accuracy). The hyperparameter vectors of the model contain
11 parameters with only integer search spaces. The number of possible hyper-
parameter combinations, i. e., the number of unique hyperparameter vectors, is
approx. 3 ·107. Additionally, we also want to look at a more complex problem by
incorporating a second setup (S - II) that uses GNNs. S - II is based on our pre-
vious work on using graph embeddings for similarity learning [10,11]. Due to the
required time for a full training run being approx. 12 – 18 hours, the iterations
in each epoch are limited and the model is only trained for ten epochs in trials.
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Each hyperparameter vector contains 26 hyperparameters, i. e., 18 integer hyper-
parameters, five float hyperparameters, and 3 categorical hyperparameters. This
results in a total number of approx. 2·1037 possible hyperparameter vectors. The
target metric is the Mean Absolute Error (MAE) between the predicted simi-
larities and the label similarities that should be minimized (see more details in
[10,11]). Both setups are validated on a part of the dataset that is disjoint from
the data that is used for training. We use simple domain models for both setups
that include the data types and value ranges of all hyperparameters as well as
an object-oriented structure of the vectors. The similarity model is also simple
with linear numeric measures for integers and floats and binary measures for
categorical hyperparameters. The similarity between two hyperparameter vec-
tors is computed by a weight-adjusted average of the object-oriented structure
of the hyperparameters.

The HPO method used in the experiments is random search (see Sect. 2.3)
as it is a baseline method that is often used and performs reasonably well among
other state-of-the-art optimization methods [9]. This way, we can focus on the
effects of HypOCBR without the need for factoring in differently parameterized
HPO methods which might be required, e. g., if using Bayesian methods. Each
optimization procedure is conducted twice, with the only difference being that
HypOCBR is just used in one procedure. All other factors are kept identical,
which includes the dataset, the training procedure, and the HPO procedure.
Randomized parts, e. g., the initial model weights and biases or the sampled
hyperparameter vectors, are made deterministic by using random seed values.
This means that it is possible to perform an optimization run with the same
results if the same random seed is used. The used meta-parameters of HypOCBR
are set according to results of pretests. For S - I, that is θ1 = 20, θ2 = 0.81,
θ3 = 50, θ4 = 15 and for S - II that is θ1 = 15, θ2 = 0.7, θ3 = 45, θ4 = 10.

The termination criterion for each optimization with and without HypOCBR
is the maximum elapsed time. A value of one hour is set for all optimizations
of S - I and four hours for all optimizations of S - II. These values reflect the dif-
ferent complexities of both setups, where training and validation takes longer
for S - II. After the optimization process is terminated, the trained and validated
hyperparameter vectors are analyzed. We assume a scenario where an expert re-
views the best hyperparameter vectors to make the final decision. Therefore, the
validation results, i. e., the accuracy or MAE, of all trials and the ten best trials
are compared among optimization procedures with and without HypOCBR. The
implementation is realized as an extension of the open-source process-oriented
CBR framework ProCAKE4 [5]. All experiments are conducted on a computer
with an Intel Xeon Gold 6138 CPU and an NVIDIA Tesla V100 SXM2, running
Ubuntu 18.04 LTS.

4http://procake.uni-trier.de

http://procake.uni-trier.de
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Table 2. Evaluation Results for S - I

# # (Proceed, Abort) Best Mean Median Mean Median
161 620 (155, 465) 0.00% 0.50% 1.10% 0.70% 0.81%
152 609 (149, 460) -0.44% 1.85% 1.60% 0.87% 0.99%
141 646 (143, 503) 0.00% 1.64% 1.50% 0.49% 0.66%
149 728 (141, 587) 1.37% 1.18% 1.29% 0.74% 0.55%
153 640 (149, 491) 2.33% 1.02% 0.72% 0.76% 0.57%
158 613 (158, 455) -0.10% 0.90% 0.49% 0.29% 0.37%
161 456 (157, 299) 0.00% 1.49% 1.10% 1.00% 1.17%
164 413 (160, 253) -0.43% 2.00% 1.94% 0.30% 0.41%
163 863 (159, 704) -0.34% 1.96% 2.21% 0.52% 0.69%
159 690 (158, 532) 0.77% 1.13% 0.71% 0.37% 0.43%

Loss (Top)Trials Loss (All)

4.2 Experimental Results

The results of the conducted experiments are depicted in Tab. 2 for S - I and
in Tab. 3 for S - II. The information in both tables is structured analogously:
The lines show ten optimization procedures, once conducted with and without
HypOCBR under the same circumstances, i. e., with the same random seed.
We give information on the number of trials that were evaluated (two leftmost
columns), which is further split up into the trials with a proceed and an abort
decision for the optimizations with HypOCBR. The loss values of the individual
optimizations are percentage differences between optimizations with and without
HypOCBR. A negative value corresponds to a negative impact of HypOCBR and
vice versa. The table shows best, mean, and median values aggregated from all
trials (left) and the ten best trials (right) of the individual optimizations. All
presented differences are statistically significant (p < 0.01).

The results for S - I (see Tab. 2) show that the HypOCBR approach aborts
many trials and only proceeds with a small share. The number of trials that are

Table 3. Evaluation Results for S - II

# # (Proceed, Abort) Best Mean Median Mean Median
105 685 (110, 575) -0.19% 17.15% 16.21% 22.95% 22.00%
108 923 (103, 820) 2.97% 16.17% 34.29% 17.13% 27.17%
113 671 (111, 560) 0.38% 16.97% 17.47% 14.13% 11.70%
113 865 (103, 762) 0.00% 16.52% 12.31% 20.13% 17.71%
107 155 (116, 39) 0.00% 7.01% 21.39% 18.11% 19.73%
112 169 (118, 51) 2.75% 4.33% 21.23% 8.62% 14.06%
115 750 (112, 638) 22.60% 16.07% 14.66% 26.00% 49.14%
113 876 (105, 771) 0.00% 11.80% 9.76% 14.57% 4.52%
114 716 (114, 602) -0.03% 15.58% 19.27% -0.70% 3.48%
113 171 (110, 61) 0.00% 6.53% 22.57% 0.07% 0.00%

Trials Loss (All) Loss (Top)
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not aborted is in a similar range as the number of trials when HypOCBR is not
used. However, the optimizations that use HypOCBR are capable of pre-filtering
a larger number of trials (increase between 251 % and 529 %) which provides a
better coverage of the search space. The aggregated accuracies (higher values
are better) show better results of the mean and median values for HypOCBR on
average, while the approach without found a better vector in four optimizations.
All in all, the differences between both variants are small, ranging from 0.29 %
to 2% for the mean and median accuracies and from -0.44 % to 2.33% for the
best accuracy.

The results for S - II (see Tab. 3) show that the number of proceeded trials for
optimizations with HypOCBR is approximately equal to the number of trials for
optimizations without HypOCBR while pre-selecting numerous trials (increase
from 144% to 854 %). The aggregated MAE values (lower values are better)
generally show improvements when using HypOCBR: The best MAE values
show decreases between -0.19% and 22.6 %. The mean and median MAE values
mostly show large decreases of up to 49.14 %.

4.3 Discussion

The overall results of the optimization procedures that use HypOCBR are promis-
ing. Regarding Hypothesis H1, HypOCBR optimizations manage to train and
validate approx. the same number of trials as the corresponding optimizations
without HypOCBR. The small deviations of the results follow no trend and
are most likely caused by computational variations of the underlying hardware.
Thus, the introduced performance overhead is negligible and H1 is accepted.
When analyzing the MAE and accuracy values, HypOCBR improves the op-
timization results in most cases with a few exceptions that stem largely from
the best trials. The overall small improvements for S - I might be due to the
full training run that is conducted during trialing. Thereby, the optimizer has
the complete dataset to train the model and, thus, might be able to find suit-
able model weights even for inferior hyperparameters. The results for S - II show
much clearer improvements than for S - I. With median MAEs being decreased
by up to 49 %, HypOCBR significantly improves the optimization procedures.
This especially reveals potential in scenarios with a limited time budget for op-
timization where only a small amount of trials is possible, e. g., in prototyping.
There, the CBR component allows sampling more hyperparameter vectors that
can be assessed for trialing. Although some of these trials might be misclassified
by HypOCBR, it still improves the overall results of the optimization. The con-
sistently improved mean and median results of all trials also hints at a success of
eliminating bad trials. Therefore, we conclude that Hypothesis H2 is only partly
accepted, since the integration of HypOCBR does not improve the optimization
results in every case. The results are consistent with Hypothesis H3 due to the
noticeably improved optimization for the more complex setup S - II compared to
S - I. However, additional tests are needed to solidify the results.
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5 Conclusion and Future Work

This paper introduced our approach called HypOCBR for enabling the use of
Case-Based Reasoning (CBR) to improve Automated Hyperparameter Optimiza-
tion (HPO). HypOCBR acts as a filter for sampled hyperparameter vectors, de-
ciding whether a vector should be considered for training and validation or not.
The decision is based on a case base of hyperparameter vectors that were already
trained and validated during optimization and on expert-modeled domain and
similarity knowledge. These components are utilized in the following decision-
making process: retrieve similar hyperparameter vectors given a query vector,
aggregate their loss values, compare the aggregated loss value to the distribution
of loss values, proceed training and validation with the query if it is similar to
well-performing hyperparameter vectors. When evaluated for two Deep Learn-
ing (DL) setups of varying complexity, optimization procedures with HypOCBR
show great potential: Due to the filtering function, more hyperparameter vectors
can be analyzed, which leads to better optimization results for both setups.

A focus of future research should be on further optimizing, extending, and
evaluating the approach. For instance, the approach might benefit from self-
learning capabilities for the decision-making process that enable automatic tun-
ing of the meta-parameters during optimization and easier application of the
approach to new data. Further, the role of the case base can be extended to
reuse existing case bases during startup and export the case base after the op-
timization procedure. It could also be beneficial to investigate more advanced
methods for the reuse and revise phases of the described lightweight CBR cycle,
which might, for instance, include methods for case adaptation or managing the
growth of the case base (e. g., [22]). Additionally, HypOCBR could be evaluated
on a larger scale by covering other HPO methods (e. g., [8,15]), other DL setups
(see [10,11] for more examples), and the influence of differently modeled domain
and similarity knowledge.
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