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Abstract

Viral-host protein protein interaction (PPI) analysis is essential to decode the molecular

mechanism of viral pathogen and host immunity processes which eventually help to control

viral diseases and optimize therapeutics. The state-of-the-art viral-host PPI predictor lever-

ages unsupervised embedding learning technique (doc2vec) to generate statistical repre-

sentations of viral-host protein sequences and a Random Forest classifier for interaction

prediction. However, doc2vec approach generates the statistical representations of viral-

host protein sequences by merely modelling the local context of residues which only partially

captures residue semantics. The paper in hand proposes a novel technique for generating

better statistical representations of viral and host protein sequences based on the infusion

of comprehensive local and global contextual information of the residues. While local resi-

due context aware encoding captures semantic relatedness and short range dependencies

of residues. Global residue context aware encoding captures comprehensive long-range

residues dependencies, positional invariance of residues, and unique residue combination

distribution important for interaction prediction. Using concatenated rich statistical represen-

tations of viral and host protein sequences, a robust machine learning framework “LGCA-

VHPPI” is developed which makes use of a deep forest model to effectively model complex

non-linearity of viral-host PPI sequences. An in-depth performance comparison of the pro-

posed LGCA-VHPPI framework with existing diverse sequence encoding schemes based

viral-host PPI predictors reveals that LGCA-VHPPI outperforms state-of-the-art predictor by

6%, 2%, and 2% in terms of matthews correlation coefficient over 3 different benchmark

viral-host PPI prediction datasets.

1 Introduction

Viral pathogens are causing millions of deaths every year around the world [1]. To date, more

than 44 million people have died due to human immunodeficiency virus (HIV) [2] and
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hepatitis B has caused over 9 million deaths [3]. These infections afflict the hosts through con-

voluted interaction mechanism occurred between protein of virus cells and human cells [4].

Considering the influx of such infections, healthcare organizations of different countries are

investing trillions on the deep analysis of viral-host protein protein interactions (PPI) to

decode the ways viruses infect and perform their life activities within host by hijacking the

immune system, to better control the viral diseases, develop anti-viral drugs to break the trans-

mission of viral infections, and to develop antibodies to push the immune system to fight viral

diseases. Comprehensive knowledge of viral host PPIs is the main driving force behind the

development of viral vector gene therapies that prevent diseases by immunization and treat-

ment by gene replacement [5]. Consequently, in-detail exploration of viral-host PPIs is critical

to acquire a deeper understanding of viral pathogenesis and to develop effective preventive as

well therapeutic strategies.

Initially, physical contacts between viral proteins and host cell proteins were identified by

high-throughput wet experimental approaches such as yeast two-hybrid (Y2H), Tandem

Affinity Purification (TAP), mass spectroscopy (MS) [6–8]. However, these experimental

approaches are expensive, and finding interactions between viral and host proteins on a large

scale through these approaches is not feasible [9]. Furthermore, due to cost and time con-

straints, these experimental approaches have been used to find viral host PPIs between species,

while the molecular analysis of viral host PPIs between species remained understudied [9].

Considering the success of Artificial Intelligence (AI) in multifarious Natural Language Pro-

cessing [10], and Bioinformatics tasks [11], researchers have developed various AI based

computational approaches for viral-host PPI prediction [12–18].

To accurately discriminate interactive viral-host protein sequence pairs from non-interac-

tive ones, existing viral-host PPI prediction approaches have utilized a variety of genetic, struc-

tural, and biochemical features [19–21]. Based on the type of biological features, existing

predictive approaches can be broadly classified into 2 main categories namely pre-known net-

work features based approaches and pure sequence based approaches, which are briefly dem-

onstrated in Fig 1. As shown by Fig 1, the former approaches rely on pre-known expression

profile networks, interaction networks, protein 3D structures or gene co-expression networks

for the determination of viral-host PPIs. For example, interolog mapping [19] based

approaches map the known interacting and non-interacting viral-host protein pairs of source

organism onto target organism to find most probable interacting viral-host protein sequence

pairs on the basis of sequence similarity of corresponding interacting proteins. Domain-

domain/motif interaction based approaches [20, 22, 23] usually leverage viral-host protein

expression profiles, protein-domain profiles, domain-domain interactions, and motif-domain

interaction information to determine potential interactions between viral and host proteins.

Besides, few network based approaches make use of 3D structures of viral host proteins [21,

24] to identify interactive proteins on the basis of their proximity to experimentally identified

3D structures of viral-host protein or correspondence to structural homology models. Also,

there exist few gene co-expression network based approaches which operate on the principle

that genes with similar expression profiles are more likely to encode interacting viral-host pro-

teins [25].

Critical analysis of pre-known network based viral-host PPI prediction approaches reveals

that expression profiles based networks, motif-domain interaction networks are known for a

very few organisms, and even these limited resources need periodic updates to match the vol-

ume and velocity of Proteomics data [19]. Furthermore, there is a possibility that the idea of

selectively transferring the knowledge of viral-host PPIs from a rich domain to target domain

may not prove fruitful for novel viral-host PPI prediction, because virus families do not carry

sufficient intrinsic information such as sequence similarities among themselves in order to
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make transfer learning from other viruses possible. This reinforces the significance of purely

sequence based predictive methodologies which exploit the relationships that exist between a

series of amino acids within protein sequences to discriminate interactive viral-host proteins

from non-interactive viral-host proteins.

To date, several purely raw sequence based computational approaches have been developed

[12–17]. As machine or deep learning approaches require statistical representations of viral-

host protein sequences to learn discriminative patterns which eventually help the model to

perform viral-host PPI prediction. Hence, existing sequence features based computational

approaches can be segregated into 2 stages: statistical representations generation and interac-

tion prediction. Researchers have leveraged a variety of statistical representations generation

(e.g repeat patterns and amino acid composition, residue physico-chemical properties, higher

order residue frequency, unsupervised sequence embeddings) and computational interaction

prediction approaches to effectively perform viral-host protein interactome analysis [13–16].

Cui et al. [17] transformed variable length viral-host protein sequence pairs into fixed

length statistical vectors using the relative frequency of amino acids triplets and utilized sup-

port vector machine (SVM) classifier to infer viral-host PPIs. Abbasali et al. [16] reaped the

benefits of 6 different feature encoders including pseudo amino acid composition (PAC),

amino acid composition (ACC), network centrality computation metrics, tissue information,

post-translational modification, and evolutionary information based features to encode viral-

host protein sequences. Encoded feature vectors were passed to a meta-classifier based on the

combination of Support vector machine (SVM), Naive Bayes (NB), Multi-Layer Perceptron

(MLP), and Random Forest (RF). Fatma et al. [12] leveraged the PPI of various viruses and the

amino acid representation scheme given by Cui et al. [17] to develop a robust SVM based

methodology namely “DeNovo”.

Furthermore, Kim et al. [18] generated statistical representations of viral-host proteins

using amino acid composition, relative occurrences of amino Acid triplets, and occurrence dif-

ference of amino Acid triplets that exist between human and virus proteins. They utilized

Fig 1. A generic categorization of different computational virus-host protein protein interaction predictors.

https://doi.org/10.1371/journal.pone.0270275.g001
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SVM to discriminate interactive viral-host protein pairs from non-interactive viral-host pro-

tein pairs. Barnes et al. [15] presented “PIPE” which estimated the interaction of viral-host

proteins by counting similar residues obtained by rotating multiple windows over viral-host

protein sequences. Considering the direct relation of amount of amino acid repetitive patterns

with interaction potential [26], Saud et al. [13] utilized the composition and repeats of amino

acids for viral-host PPIs prediction.

In a nutshell, the prime focus of every new viral-host PPI predictor has been to learn opti-

mal statistical representations of viral-host protein sequences. Among various statistical repre-

sentations learning approaches, residue physicochemical properties based viral-host protein

sequence representation learning schemes mark better performance than trivial residue fre-

quency based approaches. However, these approaches neglect the relationships among residue

segments as a function of context of entire viral-host protein sequences. In the marathon of

generating the most effective representation of viral-host protein sequences, following the suc-

cess of neural residue embeddings in a wide spectrum of Natural Language Processing [10]

and Bioinformatics tasks [11], unsupervised embedding learning technique doc2vec [27] has

shown better performance than repeat pattern and residue composition based sequence

encoding, residue frequency based sequence encoding, and residue physicochemical proper-

ties based sequence encoding schemes. However, un-supervised embedding generation

approaches primarily learn statistical representations of viral-host protein sequences by

modeling only local context of residues, which entirely neglects long range dependencies and

discriminative residue correlation important for accurate viral-host PPI prediction.

The paper in hand presents a unique way of generating rich statistical representations of

viral-host protein sequences by fusing comprehensive local and global residue contextual

information. In local residue context aware sequence encoding, we leverage physico-chemical

properties to reduce viral-host protein sequences and categorize the residues present in

reduced sequences into 6 different classes according to residue properties given by shannon

entropy. statistical representations of viral-host protein sequences are generated through the

assignment of residues to these respective classes. Local residue context aware encoding

extracts short range dependencies of residues as well as residue semantic relatedness. Whereas,

to capture long range dependencies and positional invariance of residues, in global residue

context aware encoding, we compute composition and transition of viral-host protein

sequences. Finally, to generate comprehensive statistical representations of viral-host protein

sequences by capturing diverse types of information, we fuse the features extracted by local res-

idue context aware encoding with the features extracted by global residue context aware

encoding. Using optimized concatenated viral and host protein sequences representations, a

robust machine learning framework LGCA-VHPPI based on deep forest model is developed

which extracts correlation of features important to discriminate interactive viral-host protein

pairs from non-interactive protein pairs, generalizeability of which does not affect much from

complex data non-linearity, noise, and size of the training set.

To illustrate the effectiveness of proposed comprehensive local-global residue context

aware viral-host protein sequence representation learning scheme based deep forest model, a

detailed performance assessment is performed. Over 3 different benchmark viral-host PPI pre-

diction datasets, local-global residue context aware viral-host protein sequence encoding

scheme generate most comprehensive yet discrminative representation, outperforming only

local residue context aware sequence encoding and global residue context aware sequence

encoding respectively by a decent margin. Furthermore, optimized viral-host protein sequence

representation assists the deep forest model to surpass the performance of various predictive

approaches, outperforming the state-of-the-art doc2vec and Random Forest classifier based
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approach by 6%, 2%, and 2% in terms of matthews correlation coefficient over 3 different

benchmark viral-host PPI prediction datasets.

2 Materials and methods

This section discusses proposed viral-host PPI prediction methodology, benchmark datasets

and evaluation metrics used to assess the performance of proposed methodology.

2.1 Local-Global Residue Context Aware Sequence Encoding based Viral-

Host PPI predictor (LGCA-VHPPI)

To determine the interactions among viral and host proteins, two different kinds of paradigms

have been used in the literature to generate statistical representations of viral-host protein

sequences [12, 14, 28]. One paradigm concatenates viral protein sequences with corresponding

host protein sequences and then generates statistical representations of viral-host protein

sequences. Whereas, the other paradigm generates statistical representations of viral protein

and host protein sequences separately and concatenates both statistical representations before

feeding them to a machine learning classifier. We utilize secondfirst paradigm to generate sta-

tistical representations of viral-host protein sequences using local and global residue context

aware encoding (LGCAE) method. To illustrate better, consider a hypothetical viral protein

sequence “ACGFXKLM” and host protein sequence “AKLJKMNOCPN”, using second para-

digm and LGCAE method, we generate statistical representation of viral protein sequence

(0.79, 0.89, 0.90,. . ..) and host protein sequence (0.25, 0.49, 0.60,. . ..) separately and then

concatenate both statistical representations (0.79, 0.89, 0.90,. . ..0.25, 0.49, 0.60,. . ..) to formu-

late a single representation for viral-host protein sequence that is further fed to a deep forest

classifier.

The workflow of proposed LGCA-VHPPI predictor is demonstrated in Fig 2.

LGCA-VHPPI mainly consists on 2 core modules: local and global residue context aware

encoding generation of viral-host protein sequences and viral-host PPI prediction using deep

forest model, details of both modules is provided in following sub-sections.

2.1.1 Local-global residue context aware encoding generation of viral-host protein

sequences. Proposed Local-Global Residue Context Aware Encoding (LGCAE) scheme is

the fusion of 2 different modules 1) Local Residue Context Aware Sequence Encoding (LCAE)

and 2) Global Residue Context Aware Sequence Encoding (GCAE), paradigms of which are

explained in following sub-sections.

Local residue context aware encoding generation of viral-host protein sequences. Using the

collection of viral-host protein sequences, local residue context aware encoder “LCAE” com-

putes a dictionary D = {A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V} containing 20 unique

amino acids. We reduce the distribution of 20 unique amino acids in the viral-host protein

sequences to 6 unique classes of amino acids using physico-chemical properties of amino acids

such as polarity and hydrophobicity. Considering Shannon entropy of amino acids properties

[29], rather than treating every amino acid as a unique symbol in entropy computation, it cate-

gorizes the amino acids into 6 different classes namely aliphatic (AVLIMC), polar (STNQ),

positive (KR), negative (DE), aromatic (FWYH), and special (G,P) based on especial confor-

mational properties [30]), which are provided in Table 1. With an aim to better compute the

distribution of 6 different classes based on unique amino acids, iteratively, from all 6 classes, 3

amino acids classes are treated as one group whereas other classes are treated as individual

groups. In this way, from six unique amino acid classes, we obtain 20 different patterns shown

in Table 2 where each pattern is comprised of four unique letters B, J, O, and U. We use all 20
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different patterns to compute effective statistical representations of viral-host protein

sequences.

Furthermore, to better describe the process to generate statistical representations of viral-

host protein sequences using 20 different patterns, Let us consider a viral host protein

sequence S = S1. . .‥Sn of length n where Sq represents a particular residue, an initial level

numerical representation is generated by iteratively mapping the sequence S to every group vi
expressed in terms of 4 unique letters (B, J, O, U) and replacing 4 unique letters with corre-

sponding ASCII values. To optimize initial level numerical representation of viral-host protein

sequences generated for each group vi, following the success of transformer based approaches

to capture positional information of residues for diverse Natural Language Processing and Bio-

informatics tasks [31, 32], we capture positional information of 4 unique letters to better track

short range dependencies of residues. For all 4 letters, we compute their total occurrences in

given viral-host protein sequence S represented as Bn, On,Jn, Un as well their count in initial j

entries (Bj, Oj,Jj, Uj) of sequence where j is iteratively updated until it matches the length n of

sequence. Using total occurrences of 4 unique letters (Bn, On,Jn, Un) and their iteratively

increasing counts ((Bj, Oj,Jj, Uj)), we capture alteration in positional bits of all 4 unique letters

Fig 2. The workflow of proposed “LGCA-VHPPI” viral-host PPI predictor. First Block Represents Input Module, Second Block Shows the Paradigm

of Local and Global Encoding, Third Block Integrates Local and Global Encodings, and Last Block Reveals the Probabilistic Paradigm of Deep Forest.

https://doi.org/10.1371/journal.pone.0270275.g002

Table 1. Amino acid (Residue) categorization into 6 different classes.

Descriptor Property Categorization
A1 Aliphatic amino acid A,V,L,I,M,C

A2 Aromatic amino acid F,W,Y,H

A3 Polar amino acid S,T,N,Q

A4 Positive amino acid K,R

A5 Negative amino acid D,E

A6 Special conformations G,P

https://doi.org/10.1371/journal.pone.0270275.t001
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in such a manner that odd and even position values fall in range of cosine and sine functions,

mathematical expressions of which are given in Eqs 1 and 2 respectively.

XSq við Þ ¼

cos
p

2
þ
p

2

Bj
Bn þ 1

if Sq ¼ B

cos
p

2
þ
p

2

Jj
Jn þ 1

if Sq ¼ O

cos pþ
p

2

Oj

On þ 1
; if Sq ¼ J

cos
3p

2
þ

3p

2

Uj

Un þ 1
if Sq ¼ U

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð1Þ

YSq við Þ ¼

sin
p

2
þ
p

2

Bj
Bn þ 1

if Sq ¼ B

sin
p

2
þ
p

2

Jj
Jn þ 1

if Sq ¼ O

sinpþ
p

2

Oj

On þ 1
if Sq ¼ J

sin
p

2
þ
p

2

Uj

Un þ 1
if Sq ¼ U

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð2Þ

Table 2. Twenty possible groups representing different combined patterns of residues which are described using 4

letters B, J, O, and U.

V B J O U

v1 {A1, A2, A3} A4 A5 A6

v2 {A1, A2, A4} A3 A5 A6

v3 {A1, A2, A5} A3 A4 A6

v4 {A1, A2, A6} A3 A4 A5

v5 {A1, A3, A4} A2 A5 A6

v6 {A1, A3, A5} A2 A4 A6

v7 {A1, A3, A6} A2 A4 A5

v8 {A1, A4, A5} A2 A3 A6

v9 {A1, A4, A6} A2 A3 A5

v10 {A1, A5, A6} A2 A3 A4

v11 {A2, A3, A4} A1 A5 A6

v12 {A2, A3, A5} A1 A4 A6

v13 {A2, A3, A6} A1 A4 A5

v14 {A2, A4, A5} A1 A3 A6

v15 {A2, A4, A6} A1 A3 A5

v16 {A2, A5, A6} A1 A3 A4

v17 {A3, A4, A5} A1 A2 A6

v18 {A3, A4, A6} A1 A2 A5

v19 {A3, A5, A6} A1 A2 A4

v20 {A4, A5, A6} A1 A2 A3

https://doi.org/10.1371/journal.pone.0270275.t002
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Using XSq(vi) and YSq(vi) obtained from Eqs 1 and 2, 4 different normalized vectors can be

computed for each group using mathematical expression given in Eqs 3 and 4 respectively.

XNðviÞ ¼
1

lenðseqÞ �
P
XSqðviÞ

YNðviÞ ¼
1

lenðseqÞ �
P
YSqðviÞ

2

6
6
6
6
4

3

7
7
7
7
5

ð3Þ

In Eqs 3 and 4, different mathematical formulas compute floating point values where in

each mathematical formula, len(seq) denotes the number of residues present in the sequence,

and ∑XSq(vi), ∑YSq(vi), ∑A(vi), and ∑B(vi) denote the sum of floating point values present in

respective collections (XSq(vi), YSq(vi), A(vi), and B(vi)).

AðviÞ ¼ ðXSqðviÞ � XNðviÞÞ
2

BðviÞ ¼ ðYSqðviÞ � YNðviÞÞ
2

AXNðviÞ ¼
1

lenðseqÞ � 1�
P
AðviÞ

BXNðviÞ ¼
1

lenðseqÞ � 1�
P
BðviÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

ð4Þ

Then, LCAE vector with respect to each group can be computed by concatenating 4 nor-

malized vectors (Eq 5).

LCAEG1 ¼ XNðviÞ � YNðviÞ � AXNðviÞ � BXNðviÞ ð5Þ

½LCAE ¼ LCAEG1 � LCAEG2�; . . . LCAEG10� ð6Þ

As we have 20 different patterns, so comprehensive semantic relatedness and short range

residue dependencies aware (LCAE) viral-host protein sequences representations can be gen-

erated by combining the representation of 20 different patterns (Eq 6). For each viral-host pro-

tein sequence, considering 4 normalization factors for every one out of 20 patterns, LCAE

generates a 80-dimensional 40-dimensional vector (20 × 4) (Eq 6).

Global residue context aware encoding generation of viral-host protein sequences. Global resi-

due context aware encoding (GCAE) captures comprehensive composition and transition

information of residues. First, using the collection of viral and host protein sequences, a dictio-

nary D = A,R,N,D,C,E,Q,G, H,I,L,K,M,F,P,S,T,W,Y,V containing 20 unique amino acids is

computed. Then for a given viral or host protein sequence S = S1,. . ..,Sn; of length n where Si
represents a particular amino acid present in dictionary D, GCAE generates a sparse 20×n
matrix A where 20 unique amino acids act as row indices and sequence residues Sn act as
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column indices. Sparse matrix A looks like:

A ¼

S1 S2 ::: Sn

A a11 a12 ::: a1n

R a21 a22 ::: a2n

..

. ..
. ..

. ..
. ..

.

V a20;1 a20;2 ::: a20;n

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

¼ aði;jÞ ¼
1; if DðiÞ ¼ SðjÞ

0; others

( )

ð7Þ

Sparse matrix A is distributed with the values of 0 and 1 as every cell represented as a(i,j)

gets the value of 1 if amino acid present in row index D(i) matches with amino acid present in

column index S(j) and 0 otherwise. As basic working principal of global context aware encoder

is to capture composition and transition of amino acids in viral-host protein sequences. Here

in the matrix, length of each amino acid is equal to the length of particular viral or host protein

sequence. Hence, instead of finding the composition and transition of amino acid by taking

the full rows of the matrix, we divide the rows into L number of sub-rows/sub-regions.

Depending upon the size of input viral or host protein sequence and value of L, it is highly

likely that one of many sub-regions is shorter in length due to low leftover amino acids in the

input sequence. For example, for a sequence containing 25 amino acids, if we select L = 2, then

two sub-regions will have the different number of amino acids such as 13, and 12 respectively.

However, GCAE operates on same size sub-regions. Hence, to generate same size sub-regions,

pre-processing strategy will first add one non-amino acid letter B at the end of input sequence

and then divides the sequence into 2 sub-regions where each sub-region will have 13 amino

acids. In other words, for a given viral or host protein sequence, before the generation of L
number of sub-regions, pre-processing strategy extends the length of given sequence using the

copy padding trick where it adds a non amino-acid letter (e.g B) at the end of input sequence

as many times as it makes the generation of same size L number of sub-regions possible. After

generating same size sub-regions, we compute composition and transition with respect to each

sub-region.

The composition computes the frequency of ‘1”, ‘11”, and ‘111” in each row of sparse matrix

to capture the proportion of various residues within sequence and their most dominant con-

texts.

Composition ¼ Frequency of 1 � Frequency of 11 � Frequency of 111 ð8Þ

As composition computes frequencies of three different trends for each sub-vector 2 L, there-

fore dimensions of composition vector can be computed as:

Composition Vector ¼ 20� L� 3 ð9Þ

Whereas, transition computes the frequency of ‘1” followed by ‘0” and ‘0” followed by ‘1” in

each row of the sparse matrix to capture the dominant change in the context of the residue.

Transition ¼ Frequency of 1 � 0 � Frequency of 0 � 1 ð10Þ
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Because, transition computes two different trends for each sub-vector 2 L,, hence dimen-

sions of transition vector can be computed as:

TransitionVector ¼ 20� L� 2 ð11Þ

GCAE Vector ¼ Composition Vector � Transition Vector ð12Þ

By concatenating composition and transition vectors, GCAE viral-host protein sequence

vector is generated. To better illustrate the working paradigm of global residue context aware

encoding, a hypothetical example is demonstrated in Fig 3.

Fig 3. Segregation of a hypothetical sequence of 40 amino acids into 4 sub-regions of 10 amino acids using L = 4 which are represented as A, B, C,

D. Computation of Global Residue Context Aware Encoding for One Amino Acid A in First Sub-Region A is Shown.

https://doi.org/10.1371/journal.pone.0270275.g003
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Consider a hypothetical viral protein sequence containing 40 residues. To generate statisti-

cal representations of this viral protein sequence, GCAE first generates a 2-dimensional matrix

of size amino acid: 20 ×size of sequence (40). In this matrix, 20 amino acids act as rows indices

and 40 amino acids present in sequence as column indices and each cell of every row gets the

value of 1 or 0 depending on the match of row index with column index. This sequence is

divided into four sub-regions of 10 amino acids by taking sub-region size L = 4 where GCAE

computes composition and transition of residues with respect to every sub-regions across

entire rows of sparse matrix. To better illustrate the working paradigm of GCAE, Fig 3

describes the process of learning representation for amino acid “A” using one of the 4 sub-

regions. As shown by the Fig 3, from 2-dimensional sparse matrix, for amino acid A, binary

encoding of sub-region “AKDGAAARFS” looks like ‘1000111000”. Using binary representa-

tion, GCAE computes composition by counting the frequency of ‘1”, ‘11”, and ‘111” whereas

transition computes the frequency of 1 followed by 0 and 0 followed by 1 patterns. Statistical

analysis indicates that this sub-region has four ‘1”, six ‘0”, two “11”, one “111”, one 0–1 transi-

tion, and two 1–0 transitions. As there are four sub-regions (L = 4) so this sub-region will get a

400 dimensional feature vector (Amino Acid: 20 ×L:4 ×Composition:3 + Amino Acid: 20 ×L:4

×Transition:2 = 400 dimensional vector).

Fusion of local and global residue context aware sequence encoders. Local-Global context

aware sequence encoding is generated by fusing local sequence vector produced by LCAE with

global sequence vector produced by GCAELocal-Global context aware sequence encoding is

generated by fusing 40-dimensional local sequence vector with 400 dimensional global

sequence vector which ensures that statistical representations of viral or host protein sequences

contain comprehensive short and long range positional as well as semantic information of resi-

dues important to discriminate interactive viral-host protein sequence pairs from non-interac-

tive viral-host protein sequence pairs.

2.1.2 Viral-host PPI prediction using deep forest. To distinguish interactive viral-host

protein sequences from non-interactive ones, we use a deep forest model. Deep forest model

comprises of a sequence of random forests where each random forest is trained over

sequences statistical vectors440-dimensional sequence vectors produced by proposed

LGCAE scheme and yields a 2-dimensional probability class vector. Contrary to deep neural

networks, deep forest model is extremely effective in learning hyper-level representation

with lowest cost and has shown great promise in multifarious bioinformatics tasks [33].

Deep forest classifier takes the interactive and non-interactive class probability scores of all

individual trees into account to predict more stable and accurate probability scores for both

classes across different datasets.

Furthermore, a number of hyperparameters can be tuned in a deep forest model such as

decision trees estimators, maximum depth of individual decision tree estimator, node split-

ting criteria, minimum samples used to split on at the internal node of decision tree estima-

tors, amount of random features used at every node for splitting, maximum leaf nodes, and

size of bootstrapped dataset used to train every decision tree [34, 35]. Pre-dominant studies

consider number of decision tree estimators, maximum depth of decision trees, and splitting

criteria to be the most influential hyperparameters of a deep forest model [34, 35]. Building

on this, deep forest model is optimized using the automated parameters search paradigm

namely Grid Search [36] where initial estimator range is varied from 200-to-400, maximum

depth from 500-to-800 [34, 35], and splitting criteria from gini, entropy, to logloss. On Bar-

man dataset [28], deep forest has achieved best performance with gini splitting criteria, 291

estimators, and maximum depth of 702. On Denovo [12] and Yang et al. [14] datasets, deep

forest has achieved best performance with gini splitting criteria, 300 estimators, and default

maximum depth.
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2.2 Benchmark viral-host protein-protein interaction prediction datasets

In order to evaluate the integrity of proposed viral-host PPI predictor “LGCA-VHPPI”, we

have collected 3 different benchmark datasets from 3 different research studies [12, 14, 28], sta-

tistics of which are provided in Fig 4.

Barman et al. [28] prepared a viral-host PPI dataset using a virus-protein interaction reposi-

tory VirusMINT [37]. VirusMINT contains viral-host PPIs of different viruses including papil-

loma virus, human immunodeficiency virus, hepatitis-B, and hepatitis-C virus (HCV) [37].

Considering the inclusion of quite similar sequences introduces undesirable biases especially

during the extraction of average values or pre-dominant trends which lead to model over-fit-

ting. Authors found a total of 2,707 interactions from VirusMINT [37] database. They elimi-

nated 1,224 repetitive interactions (viral protein A-host protein B and host protein B-viral

protein A). Furthermore, using a public resource namely InterPro [38] that facilitates func-

tional analysis of the proteins by categorizing them into various families and inferring their

domains, authors discarded 337 interacting protein pairs for which “InterPro” [38] had no

domain information. From remaining 1,146 interactions, they found 1,035 interactions

between viral and human proteins which were used to formulate a positive dataset. To gener-

ate a negative dataset, using positive-to-negative ratio of 1:1, they arbitrarily selected 1,035

viral-host protein pairs as negative which did not appear in positive set.

Another benchmark viral-host PPI dataset (DeNovo dataset) was prepared by Fatma et al.

[12] using VirusMentha database [39]. They collected 453 viral proteins belonging to 173 dif-

ferent viral species. Using VirusMentha database [39], they extracted 2,357 human proteins

and 453 viral proteins found a total of 5,753 PPIs between viral and human proteins. In-com-

plete and duplicate viral-host PPI were eliminated to acquire a positive dataset of 5,445 viral-

Fig 4. Statistics of 3 different benchmark viral-host PPI prediction datasets.

https://doi.org/10.1371/journal.pone.0270275.g004
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host PPIs between 445 viral proteins and 2,340 human proteins. Like Barman et al. [28], they

prepared a negative dataset of 5,445 viral-host PPIs using random pairing of viral and human

proteins which did not appear in positive set.

Third benchmark viral-host PPI dataset was prepared by Yang et al. [14]. They utilized

Host Pathogen Interaction Database [40] which contained manually formulated virus-host

PPIs as well as molecular interactions of other public PPI databases. To obtain a quality virus-

host PPI dataset, PPIs identified by MS large-scale experiments, redundant PPIs, non-physical

PPIs, and PPI sequences having less than 30 amino acids or greater than 5000 amino acids

were eliminated. In this manner, they obtained 22,653 interactive virus-host PPIs. To generate

negative samples, they leveraged dissimilarity based negative sampling approach [12]. More

specifically, according to dissimilarity based negative sampling approach, if two viral proteins

X and Y have the sequence similarity of greater than 0.3 [41] and X interacts with host protein

C, then protein pair Y-C can not be considered as a negative sample. Using positive-to-nega-

tive ratio of 1:10, authors arbitrarily selected viral protein from the collection of interactive

samples and host proteins from SwissProt [42] repository to create a negative dataset.

2.3 Evaluation criterion

Following the evaluation criteria of different researchers used to evaluate their proposed viral-

host PPI prediction methodologies, we evaluate the performance and generalizeability of pro-

posed viral-host PPI prediction methodology LGCA-VHPPI in terms of 8 different evaluation

metrics [14], mathematical expressions of which are given below:
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Here in Eq 13, O+ refers to the count of false and true positives, O- represents the count of

false and true negatives, true positives are represented by Oþ
�
Oþ
�

and true negatives are repre-

sented as O�
þ
O�
þ

. Whereas, false positives and false negatives are represented as Fþ
�
Fþ
�

and F�
þ
F�
þ

respectively. Accuracy (ACC) estimates how many interactive as well as non-interactive viral-

host protein sequence pairs are correctly predicted out of total predictions made by the model.

Sensitivity and specificity estimate the model capability to accurately identify interactive viral-

host protein sequence pairs and non-interactive viral-host protein sequence pairs respectively.

Whereas, precision estimates the proportion of interactive viral-host protein sequence pairs

from the model predictions. Taking the orthogonal relationship of precision and sensitivity

into account, F1-score produces a more balanced estimate of model performance by comput-

ing a harmonic mean between precision and sensitivity. In order to ensure that the perfor-

mance of a machine learning model is not biased towards the size of certain class, 3 evaluation

measures including matthews correlation coefficient (MCC), area-under receiver operating
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charateristics, and area-under precision recall curve are used. While MCC takes all four confu-

sion matrix categories such as true positive, true negative, false positive, false negative into

account as well size of interactive and non-interactive class to estimate model performance.

AU-ROC and AU-PRC compute model performance at different thresholds by comparing

actual classes with predicted probabilities. AU-ROC helps to visualize the trade-off among true

positive rate and false positive rate produced by the model by equivalently caring true nega-

tives and true positives. On the other hand, prime focus of AU-PRC is to visualize the trade-off

between positive predicted value and true positive rate, focusing on positive class and paying

less attention to negative class in order to effectively reveal model capability of determining

interactive viral-host protein sequence pairs.

3 Experimental setup

The proposed local-global residue context aware viral-host protein sequence representation

learning scheme and deep forest are implemented using python based open source libraries

(e.g scipy, scikit-learn).

To perform a fair performance comparison of proposed LGCA-VHPPI predictor with

existing predictors, following Barman et al. work [28], we have performed 5-fold cross valida-

tion for Barman Dataset [28]. For DeNovo dataset, a standard train test split is available, there-

fore, we have utilized the same standard split to evaluate LGCA-VHPPI approach. For third

benchmark dataset [14], authors have provided 3 different train test splits, hence, following the

work of Yang et al. [14], we evaluate LGCA-VHPPI on 3 distinct data splits and compute the

mean performance values.

4 Results and discussion

This section illustrates the performance of global context aware encoder with different number

of sub-regions. It illustrates the performance values and generalizability achieved by deep for-

est classifier under the hood of three different viral-host protein sequence representation learn-

ing schemes solely based on the local distribution of residues, global distribution of residues,

and fused local-global distribution of residues using three different benchmark datasets. Fur-

thermore, it performs a fair performance comparison of proposed local-global residue context

aware sequence encoding and deep forest based methodology LGCA-VHPPI with existing

viral-host PPI predictors namely Barman et al. [28] approach, Alguwzizani et al. [13] approach,

Fatma et al. [12] approach, and state-of-the-art Yang et al. [14] approach using benchmark

Barman [28], Denovo [12] and Yang et al. datasets [14] in terms of 7 different evaluation

measures.

4.1 Optimization of parameter L related to different number of sub-regions

in global context aware encoding approach

To find the optimal value of parameter L related to number of sub-regions in global context

aware encoding (GCAE) approach, we take 80% sequences of Barman dataset [28], and com-

plete training set of Denovo [12] and Yang et al. [14] datasets. On all three datasets, we tweak

the parameter L from 4 to 40 to assess the impact of different number of sub-regions on the

performance of GCAE produced using deep forest classifier for the task of viral-host PPI pre-

diction. As shown by the Fig 5, on Barman dataset, GCAE performance only slightly fluctuates

with different number of sub-regions, on Denovo dataset, GCAE performance remains same

across different number of sub-regions (L), and on Yang et al dataset, GCAE performance

remains at 94% until 8 sub-regions and drops by only 1% afterwards. This indicates that

parameter L related to different number of sub-regions does not significantly influence the
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performance of GCAE across all three benchmark datasets, hence, we have divided viral and

host protein sequences in 6 sub-regions to generate GCAE based representations across all

three datasets.

4.2 Performance assessment of deep forest using different statistical

representations learning schemes over 3 different benchmark viral-host

PPI prediction datasets

Fig 6 illustrates the performance values produced by deep forest model across 3 benchmark

datasets by utilizing 3 different statistical representations learning schemes to analyze which

representation learning scheme dominantly assists deep forest model to extract discriminative

patterns for accurate viral-host PPI prediction. Performance analysis in terms of accuracy

indicates that feeding deep forest model with global residue context aware based sequence

encoding (GCAE) marks the lowest performance on two of the benchmark datasets. This is

primarily due to the fact that GCAE mainly focuses on composition and transition, long-range

dependencies, and positional invariance of residues and neglects local contextual information

of residues while generating viral-host protein sequence encoding. In contrast, local residue

context aware based sequence encoding (LCAE) marks better performance than GCAE across

most benchmark datasets as it captures semantic relatedness of residues, short range depen-

dencies of residues by transforming the sequence into sub-sequences and sub-sequences into

unique groups. On average, LCAE raises GCAE performance by 2%. Among all 3 sequence

encoding schemes, proposed local-global residue context aware based sequence encoding

Fig 5. Impact of different size (L) sub-regions on the performance of global context aware encoding across three benchmark datasets namely

Barman [28] and Denovo [12], and Yang et al dataset [14].

https://doi.org/10.1371/journal.pone.0270275.g005
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(LGCAE) achieves the best performance across all 3 benchmark datasets mainly due to the

integration of comprehensive local and global residue contextual information and ability to

model precise and long discriminative residue combination distribution important for viral-

host PPI prediction. In 3 different benchmark datasets, proposed LGCAE raises LCAE average

performance by 4% and GCAE average performance by 3%.

Furthermore, to reveal the true generalization potential of deep forest across 3 different

benchmark datasets under the hood of 3 statistical representations learning schemes, perfor-

mance of LCAE, GCAE, and LCGAE is compared using AU-ROC and AU-PRC, shown in

Figs 7 and 8 respectively. In Fig 7, AU-ROC scores produced by 3 different statistical represen-

tations learning schemes indicates that, just like accuracy, once again LCGAE achieves better

degree of separability followed by GCAE and LCAE across all 3 datasets. LGCAE raises GCAE

degree of separability by the average figure of 1% and LCAE degree of separability by the aver-

age figure of 3%, achieving the maximum AU-ROC score of 98% on Denovo dataset [12].

Similarly, analyzing the deep forest performance produced using 3 distinct statistical represen-

tations learning schemes across 3 different benchmark datasets in terms of AU-PRC reveals

that LGCAE is neither biased towards type I error nor type II error. On average, LGCAE raises

AU-PRC score of GCAE by 1% and LCAE by 4%, achieving the peak AU-PRC score of 99%

on Denovo dataset [12].

In a nutshell, the main reason for LGCAE better performance and generalizeability is the

context coverage which is highest in LGCAE as compared to LCAE and GCAE. LGCAE

fuses different contextual granularity of sequence residues to capture generic yet discrimina-

tive distribution of residues which leads to better generalizeability across different viral spe-

cies by ensuring deep forest model does not over-specialize certain regions of viral-host

protein sequences. Furthermore, despite very different sequence to label distribution, pro-

posed LGCAE based deep forest approach manages to produce promising accuracy,

AU-ROC and AU-PRC across all 3 different benchmark datasets, revealing that the perfor-

mance of proposed approach is not influenced much by the size of training data as well as

Fig 6. Performance comparison of local, global, and local-global residue context aware viral-host protein sequence representation learning

schemes using deep forest model over 3 benchmark viral-host PPI prediction datasets.

https://doi.org/10.1371/journal.pone.0270275.g006
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Fig 7. AU-ROC performance figures produced by proposed LGCA-VHPPI on 3 benchmark viral-host PPIs

datasets. (a) Barman et al dataset. (b) DeNovo et al dataset. (c) Yang et al dataset.

https://doi.org/10.1371/journal.pone.0270275.g007
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Fig 8. AU-PRC performance figures produced by proposed LGCA-VHPPI on 3 benchmark viral-host PPIs

datasets. (a) Barman et al dataset. (b) DeNovo et al dataset. (c) Yang et al dataset.

https://doi.org/10.1371/journal.pone.0270275.g008
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size of positive or negative class. A promising performance and generalizability across multi-

ple datasets makes the proposed local-global context aware encoding based viral-host PPI

predictor LGCA-VHPPI an appropriate candidate for other pathogens-human PPI predic-

tion. Like viral-host PPI prediction task, a robust computational approach to accurately

determine the interaction of other pathogens such as protist or bacteria (e.g Haemophilus

influenza) with human protein is mainly comprised of two different modules 1) Effective sta-

tistical representations Generation 2) Interaction Prediction. This paper provides a unique

way to generate an effective statistical representations of viral-host protein sequences by

modeling the local and global context of residues, using which even a simple deep forest clas-

sifier manages to extract most discriminative features which help the classifier to outperform

state-of-the-art viral-host PPI prediction approaches. Hence, we consider this unique way

can be used to generate an effective statistical representations of bacteria-human or prostist-

human proteins sequences which can be passed to any machine or deep learning classifier

for accurate pathogen-human PPI prediction.

4.3 Performance comparison of proposed LGCA-VHPPI with existing

viral-host PPI predictors over Barman dataset

Table 3 performs a fair performance comparison of proposed local-global residue context

aware sequence encoding and deep forest based methodology LGCA-VHPPI with existing

viral-host PPI predictors including Barman et al. [28] approach, Alguwzizani et al. [13]

approach, Fatma et al. [12] approach, and Yang et al. [14] approach using benchmark Barman

dataset [28] in terms of 7 distinct evaluation measures. Performance analysis of a variety of

sequence encoding schemes and machine learning classifiers based viral-host PPI prediction

approaches reveals that among all existing approaches, Yang et al. [14] unsupervised sequence

embedding learning scheme doc2vec and Random Forest (RF) based predictor marks better

performance than amino acid composition and support vector machine (SVM) based predic-

tor as well as physicochemical properties and RF based predictor. Alguwzizani et al. [13] repeat

patterns, amino acid composition based sequence encoding and SVM classifier based predic-

tive approach marks better performance than Barman et al. [28] binary encoding and Random

Forest (RF) based approach. In existing viral-host PPI predictors, primary reason of doc2vec

performing better than repeat patterns and amino acid composition based sequence encoding,

residue frequency based encoding, and physico-chemical properties based encoding is its apti-

tude to capture precise semantic relatedness of residues. Whereas physico-chemical properties

and residue frequency based sequence encoding schemes mark lowest predictive performance

as they neglect the relationships among various amino acid segments as a function of context

of entire viral-host protein sequences.

It is evident from the Table 3 that proposed Local-Global residue context aware viral-host

protein sequence encoding and deep forest model significantly outperforms a variety of viral-

Table 3. Performance comparison of proposed LGCA-VHPPI with existing viral-host PPI predictors over a benchmark Barman dataset in terms of 7 different eval-

uation measures. Performance figures of Barman et al. SVM [28], Barman et al. RF [28], Alguwzizani et al SVM. [13], and Yang et al. RF [14] are taken from Yang et al.

[14] work.

Approach ACC SN SP PR F1 MCC AU-ROC

Yang et al. RF [14] 79.17 81.85 76.45 77.83 79.79 58.40 87.1

Alguwzizani et al. SVM [13] 78.6 73.72 83.48 81.69 77.50 57.50 84.70

Barman et al.’s SVM [28] 71.00 67.00 74.00 72.00 69.41 44.0 73.00

Barman et al.’s RF [28] 72.41 89.08 55.66 82.26 66.39 48.00 76.00

Proposed LGCA-VHPPI 82.00 82.00 89.37 82.40 81.47 63.99 88.00

https://doi.org/10.1371/journal.pone.0270275.t003
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host PPI predictors over Barman dataset by addressing the discrepancies present in existing

predictive approaches at the level of feature extraction and interaction prediction. Instead of

relying solely on precise local contextual information of residues to discriminate interactive

viral-host protein sequences from non-interactive ones as done by Yang et al. [14], it goes

many steps further by capturing comprehensive semantic relatedness of residues, short range

residue dependencies, unique residue combination distribution and complementing it with

long range and positional invariance information of residues important for interaction predic-

tion. For Barman dataset [28], LGCA-VHPPI outperforms state-of-the-art performance by the

figure of 14%, 6%, 5%, 3%, and 2% with respect to specificity, MCC, precision, accuracy, and

F1-score.

4.4 Performance comparison of proposed LGCA-VHPPI with existing

viral-host PPI predictors over DeNovo dataset

Table 4 performs a detailed performance comparison of proposed local-global residue context

aware sequence encoding and deep forest based methodology LGCA-VHPPI with existing

viral-host PPI predictors including Alguwzizani et al. [13] approach, Fatma et al. [12]

approach, and Yang et al. [14] approach using benchmark DeNovo dataset [12] in terms of 7

distinct evaluation measures. Among existing viral-host PPI predictors, on DeNovo datasets,

just like Barman dataset [28], once again doc2vec and RF based viral-host predictor achieves

higher performance figures followed by repeat patterns, amino acid composition based

sequence encoding and SVM based predictor, and physicochemical properties and RF based

predictor. However, existing viral-host PPI predictors lack of aptitude to continuously model

short as well as long range dependencies of residues [14] marks room for improvement. Pro-

posed Local-Global residue context aware viral-host protein sequence encoding captures het-

erogeneous residue ordinal and contextual information which eventually helps the deep forest

model to identify the most crucial residue distributions for both interactive and non-interac-

tive viral-host protein sequences. For benchmark DeNovo dataset [12], LGCA-VHPPI sur-

passes the previous best performance [14] by 4%, 1%, 2%, 1% in terms of sensitivity, accuracy,

MCC, and F1-score.

4.5 Performance comparison of proposed LGCA-VHPPI with existing

viral-host PPI predictors over Yang dataset

Table 5 performs a fair performance comparison of proposed local-global residue context

aware sequence encoding and deep forest based methodology LGCA-VHPPI with Barman

et al. SVM [28], Fatma et al. [12] SVM approach, and state-of-the-art Yang et al. [14] approach

using benchmark Yang et al. dataset [14] in terms of 7 distinct evaluation measures. It is evi-

dent from the Table 5 that proposed LGCA-VHPPI approach significantly outperforms both

Barman et al. SVM [28] and Fatma et al. SVM [12] approaches across all seven evaluation

Table 4. Performance comparison of proposed LGCA-VHPPI with existing viral-host PPI predictors over benchmark DeNovo dataset [12] in terms of 7 different

evaluation measures. Performance figures of DeNovo SVM [12], Alguwzizani et al. SVM [13], and Yang et al. RF on DeNovo Dataset [12] are taken from Yang et al. work

[14].

Approach ACC SN SP PR F1 MCC AU-ROC

Yang et al. RF [14] 93.23 90.33 96.17 95.99 93.07 86.60 98.10

Alguwzizani et al. SVM [13] 86.47 86.35 86.59 86.56 86.46 72.90 92.60

Fatma et al. SVM [12] 81.90 80.71 83.06 – – – –

Proposed LGCA-VHPPI 94.24 94.24 96.47 94.32 94.23 88.56 98.49

https://doi.org/10.1371/journal.pone.0270275.t004
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metrics such as accuracy by 4%, sensitivity by 44%, specificity by 50%, precision and F1-score

by 6%, MCC by 17%, and and AU-ROC by 12%. Analysis of performance figures produced by

state-of-the-art predictor [14] over Yang dataset [14] indicates that state-of-the-art predictor

[14] is biased towards type II error. In contrast, the proposed LGCA-VHPPI is neither biased

toward type I error nor type II error as it achieves quite consistent performance across differ-

ent evaluation metrics. LGCA-VHPPI outperforms state-of-the-art predictor [14] sensitivity

figure by a large value of 58%, F1-score by the value of 40%, and replicate top performance in

rest of the evaluation metrics over Yang dataset [14].

5 Viral host protein protein interaction pathway analysis

Viral-host PPI prediction only facilitates whether particular viral-host protein pairs are inter-

active or non-interactive. The main goal of viral-host PPI pathway analysis is to determine

which viral proteins interact with which host proteins. Beside providing a robust viral-host

PPI predictor, we also facilitate viral-host PPI pathway analysis using proposed predictor

which utilizes the interaction information of viral and host proteins. To accomplish viral-host

PPI pathway analysis, we take the model trained on Denovo training set and assess the interac-

tion pathway analysis power of trained model on a randomly chosen virus protein and human

protein from test set of Denovo dataset.

To illustrate better, interaction pathways of randomly selected viral protein called Nipah

virus (Acronym: Nipav, identifier: P0C1C7) and arbitrarily selected human protein called

Tubulin beta-4B (Acronym: TBB4B identifier: P68371)are shown in Fig 9(a) and 9(b)

respectively. In the Fig 9(a), central node indicates the Nipah virus and surrounding associ-

ated nodes are 29 human proteins (e.g Importin subunit alpha-4 OS Histone H1t OS) which

are found as interacting partners of Nipah virus in the test set. Likewise, Fig 9(b) central

node represents Tubulin beta-4B human protein and surrounding associated 11 nodes (e.g

Non-structural protein 1 OS = Influenza A virus, V protein OS = Measles virus, Genome

polyprotein OS = Hepatitis C virus) are its interactive viral proteins partners found in the

test set. The complete list of virus or human proteins used in both illustrations, together

with their short names, scientific names, and PMIDs is provided in S1 Data to facilitate the

readers.

Proposed model accurately predicts 29 positive interactions of Nipah virus and 11 positive

interactions of Tubulin beta-4B human proteins. A similar performance trend is shown by

proposed model for various other viruses and human proteins which is why it manages to

achieve promising performance in terms of different evaluation metrics as compared to state-

of-the-art viral-host PPI predictors. This also reveals the supreme potential of proposed model

to perform comprehensive interaction pathway analysis of multiple viral species with respect

to human proteins and vice versa.

Table 5. Performance comparison of proposed LGCA-VHPPI with existing viral-host PPI predictors over Yang dataset [14] in terms of 7 different evaluation mea-

sures. Performance Figures of Barman et al. SVM [28] and Fatma et al. SVM [12] on Yang et al. dataset are computed using their proposed methodologies. Performance

figures of Yang et al. RF [14] are taken from Yang et al. work [14].

Approach ACC SN SP PR F1 MCC AU-ROC

Barman et al. SVM [28] 90.91 50.0 50.0 82.64 86.58 42.2 82.7

Fatma et al. SVM [12] 90.97 50.68 50.68 88.96 86.86 9.0 78.2

Yang et al. RF [14] 94.05 36.92 99.76 94.04 53.03 56.86 95.55

Proposed LGCA-VHPPI 94.22 94.22 1.0 94.84 93.34 58.71 94.00

https://doi.org/10.1371/journal.pone.0270275.t005
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Fig 9. Nipah virus (Acronym: Nipav, identifier: P0C1C7) interactions with multiple human proteins and human

protein Tubulin beta-4B (Acronym: TBB4B identifier: P68371) interactions with multiple virus proteins. Here

only Short Names of Viruses and Human Proteins are Mentioned. Complete Details of Short names, Scientific Names,

and PMIDs of Multiple Human and Virus Proteins are provided in S1 Data. (a) Virus P0C1C7 interactions with

multiple human proteins. (b) Human Protein P68371 interactions with multiple viruses.

https://doi.org/10.1371/journal.pone.0270275.g009
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6 An interactive and user-friendly LGCA-VHPPI web server

To facilitate Genomics and Proteomics researchers and practitioners, we have developed an

interactive and user-friendly LGCA-VHPPI web server available at https://sds_genetic_

analysis.opendfki.de/HVI/. This web server can be used to determine interactions among viral

and host proteins merely using raw sequences related to diverse viral species. It can also be

used to complement experimental approaches because it can validate experimentally detected

viral-host PPIs. Unlike existing Genomics and Proteomics sequence analysis web servers, it

can be used to train and optimize machine learning model from scratch on account of proteins

belonging to new viral species and perform prediction on novel sequences belonging to exist-

ing or new virus species.

7 Conclusion

A comprehensive performance analysis of proposed viral-host PPI predictor leads to conclude

that generating statistical representations of viral-host protein sequences by fusing compre-

hensive local and global residue contextual information proves really effective to largely raise

the generalizeability of deep forest classifier across a variety of species. While local residue con-

text aware encoder assigns higher weights to those residues which share similar context while

generating statistical representations of viral-host protein sequences, global residue context

aware encoder generates statistical representations of viral-host protein sequences by model-

ling long range dependencies and positional invariance of residues. Using optimized sequence

representation based on the integration of local and global context aware encoders, proposed

viral-host PPI predictor(LGCA-VHPPI) manages to extract crucial residue correlations and

hidden patterns important for accurate interaction prediction. A compelling future line of cur-

rent work would be to investigate the performance impact of diverse neural strategies (e.g

attention) at the level of sequence encoding and interaction prediction.
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10. Felipe Almeida and Geraldo Xexéo. Word embeddings: Asurvey. arXiv preprint arXiv:1901.09069,

2019.

11. Chiu Billy and Baker Simon. Word embeddingsfor biomedical natural language processing: A survey.

Language and Linguistics Compass, 14(12):e12402, 2020. https://doi.org/10.1111/lnc3.12402

12. Fatma-Elzahraa Eid, El Hefnawi Mahmoud, and Heath Lenwood S. Denovo: virus-host sequence-

based protein–proteininteraction prediction. Bioinformatics, 32(8):1144–1150, 2016. https://doi.org/10.

1093/bioinformatics/btv737

13. Alguwaizani Saud, Park Byungkyu, Zhou Xiang, De-Shuang Huang, and Han Kyungsook. Predictingin-

teractions between virus and host proteins using repeatpatterns and composition of amino acids. Jour-

nal ofhealthcare engineering, 2018, 2018.

14. Yang Xiaodi, Yang Shiping, Li Qinmengge, Wuchty Stefan, and Zhang Ziding. Prediction of human-

virus protein-protein interactions through a sequence embedding-basedmachine learning method.

Computational and structuralbiotechnology journal, 18:153–161, 2020. https://doi.org/10.1016/j.csbj.

2019.12.005 PMID: 31969974

15. Bradley Barnes, Maryam Karimloo, Andrew Schoenrock, Daniel Burnside, Edana Cassol, Alex Wong,

et al. Predicting novelprotein-protein interactions between the hiv-1 virus andhomo sapiens. In 2016

IEEE EMBS International StudentConference (ISC), pages 1–4. IEEE, 2016.

16. Emamjomeh Abbasali, Goliaei Bahram, Zahiri Javad, and Reza Ebrahimpour. Predicting protein–pro-

tein interactionsbetween human and hepatitis c virus via an ensemblelearning method. Molecular Bio-

systems, 10(12):3147–3154, 2014. https://doi.org/10.1039/C4MB00410H PMID: 25230581

17. Cui Guangyu, Fang Chao, and Han Kyungsook. Prediction of protein-protein interactions between

viruses and humanby an svm model. In BMC bioinformatics, volume 13, page S5. Springer, 2012.

18. Kim Byungmin, Alguwaizani Saud, Zhou Xiang, De-Shuang Huang, Park Byunkyu, and Han Kyung-

sook. Animproved method for predicting interactions between virusand human proteins. Journal of

PLOS ONE LGCA-VHPPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0270275 July 5, 2022 24 / 26

https://doi.org/10.1128/mSystems.00303-18
https://doi.org/10.3389/fgeed.2021.618346
http://www.ncbi.nlm.nih.gov/pubmed/34713249
https://doi.org/10.1006/meth.2001.1183
http://www.ncbi.nlm.nih.gov/pubmed/11403571
https://doi.org/10.1073/pnas.061034498
https://doi.org/10.1038/nature04209
http://www.ncbi.nlm.nih.gov/pubmed/16189514
https://doi.org/10.1111/lnc3.12402
https://doi.org/10.1093/bioinformatics/btv737
https://doi.org/10.1093/bioinformatics/btv737
https://doi.org/10.1016/j.csbj.2019.12.005
https://doi.org/10.1016/j.csbj.2019.12.005
http://www.ncbi.nlm.nih.gov/pubmed/31969974
https://doi.org/10.1039/C4MB00410H
http://www.ncbi.nlm.nih.gov/pubmed/25230581
https://doi.org/10.1371/journal.pone.0270275


Bioinformatics andComputational Biology, 15(01):1650024, 2017. https://doi.org/10.1142/

S0219720016500244

19. Yu Haiyuan, Luscombe Nicholas M, Hao Xin Lu, Zhu Xiaowei, Xia Yu, Han Jing-Dong J, et al. Annota-

tion transfer between genomes: protein–protein interologs andprotein–dna regulogs. Genome

research, 14(6):1107–1118, 2004. https://doi.org/10.1101/gr.1774904 PMID: 15173116

20. Dyer Matthew D, Murali TM, and Sobral Bruno W. Computational prediction of host-pathogen protein–

proteininteractions. Bioinformatics, 23(13):i159–i166, 2007. https://doi.org/10.1093/bioinformatics/

btm208 PMID: 17646292

21. Zhang Qiangfeng Cliff, Petrey Donald, Deng Lei, Qiang Li, Shi Yu, Thu Chan Aye, et al. Structure-base-

dprediction of protein–protein interactions on a genome-widescale. Nature, 490(7421):556–560, 2012.

https://doi.org/10.1038/nature11503 PMID: 23023127

22. Singhal Mudita and Resat Haluk. A domain-basedapproach to predict protein-protein interactions.

BmcBioinformatics, 8(1):1–19, 2007. https://doi.org/10.1186/1471-2105-8-199 PMID: 17567909

23. Zhang Aidi, He Libo, and Wang Yaping. Prediction of gcrvvirus-host protein interactome based on struc-

tural motif-domain interactions. BMC bioinformatics, 18(1):1–13, 2017. https://doi.org/10.1186/s12859-

017-1500-8 PMID: 28253857

24. Sinha Rohita, Kundrotas Petras J, and AVakser Ilya. Docking by structural similarity at protein-protein

interfaces. Proteins: Structure, Function, and Bioinformatics, 78(15):3235–3241, 2010. https://doi.org/

10.1002/prot.22812 PMID: 20715056

25. Ge Hui, Liu Zhihua, Church George M, and Vidal Marc. Correlation between transcriptome and interac-

tomemapping data from saccharomyces cerevisiae. Naturegenetics, 29(4):482–486, 2001. PMID:

11694880

26. Coletta Alain, Pinney John W, Weiss Solı́s David Y, Marsh James, Pettifer Steve R, and Attwood

Teresa K. Low-complexity regions within protein sequences have position-dependent roles. BMC sys-

tems biology, 4(1):43, 2010. https://doi.org/10.1186/1752-0509-4-43 PMID: 20385029

27. Yang X., Yang S., Li Q., Wuchty S. & Zhang Z. Prediction of human-virus protein-protein interactions

through a sequence embedding-based machine learning method. Computational And Structural Bio-

technology Journal. 18 pp. 153–161 (2020)

28. Barman Ranjan Kumar, Saha Sudipto, and Das Santasabuj. Prediction of interactions between viral

and host proteinsusing supervised machine learning methods. PloS one, 9(11):e112034, 2014. https://

doi.org/10.1371/journal.pone.0112034 PMID: 25375323

29. Capra John A and Singh Mona. Predicting functionallyimportantresiduesfromsequenceconservation.

Bioinformatics, 23(15):1875–1882, 2007. https://doi.org/10.1093/bioinformatics/btm270 PMID:

17519246

30. Mirny Leonid A and Shakhnovich Eugene I. Universallyconserved positions in protein folds: reading

evolutionarysignals about stability, folding kinetics and function. Journal of molecular biology, 291

(1):177–196, 1999. https://doi.org/10.1006/jmbi.1999.2911 PMID: 10438614

31. Muhammad Nabeel Asim, Dengel Andreas, and Ahmed Sheraz. A convnet based multi label microrna

sub cellularlocation predictor, by incorporating k-mer positionalencoding. bioRxiv, 2020.

32. Ashish Vaswani, Noam Shazeer, Niki Parmar, JakobUszkoreit, Llion Jones, Aidan N Gomez, et al.

Attention is all you need. InAdvances inneural information processing systems, pages 5998–6008,

2017.

33. Yu Bin, Chen Cheng, Yu Zhaomin, Ma Anjun, Liu Bingqiang, and Ma Qin. Prediction of protein-protein

interactionsbased on elastic net and deep forest. bioRxiv, 2020.

34. Zhou, Z. & Feng, J. Deep forest. ArXiv Preprint ArXiv:1702.08835. (2017)

35. Probst P., Wright M. & Boulesteix A. Hyperparameters and tuning strategies for random forest. Wiley

Interdisciplinary Reviews: Data Mining And Knowledge Discovery. 9, e1301 (2019)

36. Liashchynskyi, P. & Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison

for NAS. ArXiv Preprint ArXiv:1912.06059. (2019)

37. Chatr-Aryamontri Andrew, Ceol Arnaud, Peluso Daniele, Nardozza Aurelio, Panni Simona, Sacco Fran-

cesca, et al. Virusmint: a viral protein interaction database. Nucleicacids research, 37(suppl1):D669–

D673, 2009. https://doi.org/10.1093/nar/gkn739 PMID: 18974184

38. Finn R., Attwood T., Babbitt P., Bateman A., Bork P., Bridge A., et al. InterPro in 2017—beyond protein

family and domain annotations. Nucleic Acids Research. 45, D190–D199 (2017). https://doi.org/10.

1093/nar/gkw1107 PMID: 27899635

39. Calderone Alberto, Licata Luana, and Cesareni Gianni. Virusmentha: a new resource for virus-host pro-

teininteractions. Nucleic acids research, 43(D1):D588–D592, 2015. https://doi.org/10.1093/nar/gku830

PMID: 25217587

PLOS ONE LGCA-VHPPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0270275 July 5, 2022 25 / 26

https://doi.org/10.1142/S0219720016500244
https://doi.org/10.1142/S0219720016500244
https://doi.org/10.1101/gr.1774904
http://www.ncbi.nlm.nih.gov/pubmed/15173116
https://doi.org/10.1093/bioinformatics/btm208
https://doi.org/10.1093/bioinformatics/btm208
http://www.ncbi.nlm.nih.gov/pubmed/17646292
https://doi.org/10.1038/nature11503
http://www.ncbi.nlm.nih.gov/pubmed/23023127
https://doi.org/10.1186/1471-2105-8-199
http://www.ncbi.nlm.nih.gov/pubmed/17567909
https://doi.org/10.1186/s12859-017-1500-8
https://doi.org/10.1186/s12859-017-1500-8
http://www.ncbi.nlm.nih.gov/pubmed/28253857
https://doi.org/10.1002/prot.22812
https://doi.org/10.1002/prot.22812
http://www.ncbi.nlm.nih.gov/pubmed/20715056
http://www.ncbi.nlm.nih.gov/pubmed/11694880
https://doi.org/10.1186/1752-0509-4-43
http://www.ncbi.nlm.nih.gov/pubmed/20385029
https://doi.org/10.1371/journal.pone.0112034
https://doi.org/10.1371/journal.pone.0112034
http://www.ncbi.nlm.nih.gov/pubmed/25375323
https://doi.org/10.1093/bioinformatics/btm270
http://www.ncbi.nlm.nih.gov/pubmed/17519246
https://doi.org/10.1006/jmbi.1999.2911
http://www.ncbi.nlm.nih.gov/pubmed/10438614
https://doi.org/10.1093/nar/gkn739
http://www.ncbi.nlm.nih.gov/pubmed/18974184
https://doi.org/10.1093/nar/gkw1107
https://doi.org/10.1093/nar/gkw1107
http://www.ncbi.nlm.nih.gov/pubmed/27899635
https://doi.org/10.1093/nar/gku830
http://www.ncbi.nlm.nih.gov/pubmed/25217587
https://doi.org/10.1371/journal.pone.0270275


40. Ammari Mais G, Gresham Cathy R, McCarthy Fiona M, and Nanduri Bindu. Hpidb 2.0: a curated data-

base forhost–pathogen interactions. Database, 2016, 2016. https://doi.org/10.1093/database/baw103

PMID: 27374121

41. Li Weizhong and Godzik Adam. Cd-hit: a fast program forclustering and comparing large sets of protein

or nucleotidesequences. Bioinformatics, 22(13):1658–1659, 2006. https://doi.org/10.1093/

bioinformatics/btl158 PMID: 16731699

42. Uniprot: the universal protein knowledgebase. Nucleicacids research, 45(D1):D158–D169, 2017

https://doi.org/10.1093/nar/gkw1099 PMID: 27899622

PLOS ONE LGCA-VHPPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0270275 July 5, 2022 26 / 26

https://doi.org/10.1093/database/baw103
http://www.ncbi.nlm.nih.gov/pubmed/27374121
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/bioinformatics/btl158
http://www.ncbi.nlm.nih.gov/pubmed/16731699
https://doi.org/10.1093/nar/gkw1099
http://www.ncbi.nlm.nih.gov/pubmed/27899622
https://doi.org/10.1371/journal.pone.0270275

