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Abstract

Deep exploration of histone occupancy and covalent post-translational modifications (e.g., acetylation, methylation) is essen-
tial to decode gene expression regulation, chromosome packaging, DNA damage, and transcriptional activation. Existing
computational approaches are unable to precisely predict histone occupancy and modifications mainly due to the use of
sub-optimal statistical representation of histone sequences. For the establishment of an improved histone occupancy and
modification landscape for multiple histone markers, the paper in hand presents an end-to-end computational multi-paradigm
framework “Histone-Net”. To learn local and global residue context aware sequence representation, Histone-Net gener-
ates unsupervised higher order residue embeddings (DNA2Vec) and presents a different application of language modelling,
where it encapsulates histone occupancy and modification information while generating higher order residue embeddings
(SuperDNA2Vec) in a supervised manner. We perform an intrinsic and extrinsic evaluation of both presented distributed rep-
resentation learning schemes. A comprehensive empirical evaluation of Histone-Net over ten benchmark histone markers data
sets for three different histone sequence analysis tasks indicates that SuperDNA2Vec sequence representation and softmax
classifier-based approach outperforms state-of-the-art approach by an average accuracy of 7%. To eliminate the overhead of
training separate binary classifiers for all ten histone markers, Histone-Net is evaluated in multi-label classification paradigm,
where it produces decent performance for simultaneous prediction of histone occupancy, acetylation, and methylation.

Keywords Machine learning and deep learning - Supervised kmer embeddings - Multi-label and binary classification -
Histone markers - Acetylation, methylation and histone occupancy

Introduction

Cells are fundamental building blocks of living organisms.
Cells constitute tissues, tissues form organs and combination
of organs give birth to organ systems [1,2]. The way differ-
ent living organisms grow, survive, develop and reproduce
is regulated by an instruction manual called Deoxyribonu-
cleic Acid (DNA) or Genetic code [1,2]. The genetic code is
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organised into chromatin in a series of nucleosomes, where in
each nucleosome, DNA is wrapped around histone octamers
which are made up of four pairs of histone proteins (H2A,
H2B, H3 and H4). A graphical representation of nucleosome
construction with Histone Octamer and DNA binding is illus-
trated in Supplementary Figure 1. In the process of gene
regulation, nucleosomes play an important role as gene tran-
scription is blocked in regions, where DNA is tightly packed
by nucleosomes. Nucleosome occupancy affects epigenetic
silencing [3], cell replication [4], differentiation [5], and re-
programming [5]. Determining whether DNA around histone
octamer is tightly wrapped or loosely wrapped, a genetic
task known as histone occupancy determination has profound
importance in genetic research [6,7]. Accurate determina-
tion of histone occupancy can facilitate deeper understanding
of DNA accessibility to proteins [8,9], chromatin functions
[10,11], and occupancy correlation with promoter strength
[12].
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Similar to histone occupancy, histone modifications
(acetylation, methylation, phosphorylation, sumoylation, and
ubiquitylation) are responsible to regulate multifarious bio-
logical processes including chromosome wrapping [13,14]
transcriptional activation and de-activation [15-17], dam-
aging and repairing of DNA [18,19]. For instance, histone
amino (N)-terminal tails modifications influence internu-
cleosomal exchanges and are capable to modify chromatin
structures which ultimately affect gene expression [20] and
give birth to many complex diseases, such as Cancer [13].

To acquire a deeper comprehension of epigenetic regula-
tion at cellular level and to pave way for the development
of drugs specifically targeting cancer treatment, and his-
tone altering enzymes [21], histone modification detection
is essentially required [22]. Histone modifications [23]
largely affect the availability of DNA to different tran-
scription factors and ribonucleic acid polymerases. Histone
octamers repeat themselves across all nucleosomes in his-
tone sequences, hence properties of nucleosomes primarily
rely on incorporated area of histone sequences with specific
acetylation and methylation sites level [24,25]. In addi-
tion, considering methylation of histone proteins H3 and
H4 mainly regulate the core activity of DNA replication
[26], and acetylation of different histone proteins impact
chromatin structure as well as gene transcription [27,28].
A thorough analysis of histone acetylation and methylation
areas in histone sequences can decipher the association of his-
tone modification with metabolism which mediates diverse
epigenetic abnormalities in multifarious pathological condi-
tions [29].

Developing a robust computational approach for accurate
histone occupancy and modification prediction has been an
active area of research, since the public availability of ten
benchmark data sets developed by [30]. From ten benchmark
histone marker data sets, two belong to histone occupancy,
three are related to histone acetylation, and five are related
to histone methylation. Across 10 different benchmark data
sets, histone sequences having occupancy, acetylation, or
methylation level greater than 1.2 belong to positive class and
lower than 0.8 belong to negative class. To perform binary
classification across all ten benchmark histone markers data
sets, [30] proposed the very first computational approach
for histone occupancy and modification prediction for yeast
genome. Their proposed approach utilized occurrence of
higher order residues to generate statistical representation
of histone sequences and Support Vector Machine classifier.

Using 10 different benchmark data sets facilitated by
[30] related to histone occupancy, acetylation, and methy-
lation, to date, a number of computational methodologies
have been developed [31-36]. Prime focus of existing com-
putational approaches [30,34-36] has been to generate a
rich statistical representation of histone sequences. In this
regard, few researchers have utilized bag of words-based
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approaches [30,34], whereas others have utilized one hot
encoding scheme to generate statistical representation of
histone sequences [31-33,35]. While, bag of words-based
statistical representation only manages to capture residue
frequency and neglects rich semantic information. One-hot
encoding lacks to capture comprehensive contextual infor-
mation and correlations of residues. Furthermore, bag of
words and one-hot encoding schemes face the curse of dimen-
sionality issue with the induction of higher order sequence
residues.

Recently, [36] proposed a deep learning approach for
histone occupancy and modification prediction. For each
sequence, they transformed one-hot encoded vector of higher
order residues into image-like tensor through the assignment
of each higher order residue to a pixel in an image by making
use of Hilbert curves. Image-based representation of histone
sequences was passed to a CNN model for the extraction of
important residue correlations and dependencies. Although
image-based representation manages to find discriminative
sequence residues, however, fails to handle transnational
invariance of residues mainly due to the supreme attention
towards local residue context. Despite the fact that histone
sequences are primarily comprised of four basic residues
[adenine (A), cytosine (C), guanine (G), and thymine (T)],
treating them as a simple string of repetitive letters neglects
their biologically relevant and inherent spatial configuration
as well as interaction between sequence residues. Complex
molecular spatial composition of histone sequences indi-
cates the relevance of a rich statistical representation which
can effectively capture long-range dependencies of residues.
However, due to the lack of comprehensive understanding
of sequence residue patterns, a rich statistical representation
scheme for histone sequences related to histone occupancy,
methylation, and acetylation does not exist.

Building on these deficiencies, for the establishment of an
improved and more robust histone occupancy and modifica-
tion landscape, the paper in hand develops a lightweight com-
putational multi-paradigm framework, namely, “Histone-
Net”. Considering the efficacy of neural language mod-
elling in diverse Natural Language Processing (NLP) [37]
and Bioinformatics tasks [38] for capturing long-range
dependencies and relatedness of sequence residues as well
as improving the generalizability of predictive pipeline.
Histone-Net makes use of neural language modelling to gen-
erate a rich distributed representation of histone sequences.
Inspiring from the extensive usage of FastText model to
generate word or higher order residue embeddings in an
un-supervised manner for diverse NLP (e.g., text classi-
fication) [37,39] and Bioinformatics tasks (e.g., protein
family classification [40], enhancer prediction [41], n6-
methyladenine sites prediction [42]). Histone-Net generates
un-supervised higher order residue embeddings (DNA2Vec)
of histone sequences. Furthermore, Histone-Net presents a
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different application of FastText model, where it incorpo-
rates histone occupancy and modification information while
learning higher order residue embeddings (SuperDNA2Vec)
of histone sequences. To investigate which distributed rep-
resentation leaning scheme better captures coarse-grained
and fine-grained relations of higher order residues, a rig-
orous intrinsic evaluation of both kinds of embeddings
is performed by mapping high-dimensional feature space
into low-dimensional feature space using Principal Compo-
nent Analysis (PCA) and t-distributed Stochastic Neighbor
Embedding (t-SNE) schemes. Extrinsic evaluation of both
types of embeddings is also performed using three differ-
ent machine learning classifiers (Random Forest, AdaBoost,
Support Vector Machine).

Existing approaches [31-36] have not been evaluated in
cross-domain binary classification paradigm, where for each
histone sequence analysis task, model is trained on one type
of histone marker and tested on another type of histone
marker. We explore the performance potential of proposed
Histone-Net approach in cross-domain binary classification
paradigm. Furthermore, a critical analysis of existing compu-
tational approaches reveals that in all existing approaches, 10
different checkpoints are obtained by rigorously training the
single model separately over 10 benchmark genomic data sets
to predict histone occupancy, methylation, and acetylation
areas in histone sequences. In this strategy, one needs to know
the target histone marker beforehand to select appropriate
checkpoint amongst all model checkpoints while making pre-
diction over unseen histone sequences. More recently, [31]
developed a deep learning approach “DeepHistone” to simul-
taneously predict different histone markers associated with
particular sequence. However, DeepHistone is only capa-
ble to detect the type of histone marker modification and
unable to predict histone occupancy and modification lev-
els. Inspiring from the work of Yin et al. [31] who treated
the identification of histone markers as multi-label clas-
sification problem, we develop a multi-label classification
paradigm to deal with the expensive overhead of generat-
ing separate model checkpoints for ten benchmark data sets
belonging to three histone sequence analysis tasks. More
specifically, in multi-label classification paradigm, perfor-
mance of Histone-Net is evaluated in terms of its ability to
simultaneously predict histone marker type, its occupancy,
acetylation, and methylation levels. A comprehensive evalu-
ation of proposed approach under the hood of intra-domain
and cross-domain binary classification as well as multi-label
classification paradigm proves the dominance of proposed
approach over state-of-the-art predictor, its generalization
potential across multiple histone markers as well as power
to simultaneously predict histone type, its occupancy, acety-
lation, and methylation areas using a single deep learning
model.

Materials and methods

This section illustrates different modules of computational
framework Histone-Net, benchmark binary classification
data sets, the process used to develop a multi-label classi-
fication data set, and evaluation metrics used to evaluate the
integrity of Histone-Net in binary and multi-label classifica-
tion paradigm.

Histone-Net framework

To better illustrate the dynamics of proposed computational
framework Histone-Net, this section briefly describes four
different modules of Histone-Net. First module generates
overlapping higher order residues of histone sequences,
details of residue generation is provided in “Higher order
residue generation of histone sequences”. Second module
generates unsupervised sequence embeddings (DNA2Vec)
using FastText model, details of which are provided in “Unsu-
pervised distributed representation of histone sequences
(DNA2Vec)”. Third module presents a novel approach,
namely, Histone-Net which generates histone occupancy
and modification information aware residue embeddings
in a supervised manner (SuperDNA2Vec) and is capa-
ble to perform histone occupancy and modification pre-
diction in binary classification paradigm. Details of third
module is provided in “Histone-Net approach based on
supervised distributed representation of histone sequences
(SuperDNA2Vec)”.

Fourth module presents the work of Histone-Net in
multi-label classification paradigm, where it simultaneously
predicts histone marker type, occupancy, acetylation, and
methylation levels, a brief description of which is given in
“Histone-Net: multi-label classification paradigm”.

Higher order residue generation of histone sequences

Histone sequences are comprised of four repetitive letters
adenine (A), guanine (G), cytosine (C), and thymine (T).
One of the most common approach to analyze long his-
tone sequences is segregating the sequences into higher order
residues [43—48]. Mainly, two different kinds of higher order
residues can be derived from the sequence including over-
lapping and non-overlapping [49] by rotating a fixed-size
window with certain stride size (Supplementary Figure 2).
Overlapping higher order residues are generated by rotat-
ing a fixed-size window over histone sequences with the
stride size less than the size of the window. Whereas, non-
overlapping higher-order residues are generated by rotating
a fixed size window over histone sequences with stride size
equal to the size of the window. Non-overlapping higher
order residues loose the deep correlation information of basic
residues, whereas overlapping residues retain deep correla-
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Fig. 1 Number of discriminative features of positive and negative class along with overlapping features among two classes across one data set of

histone occupancy, acetylation, and methylation

tion information of residues. Following existing sequence
analysis work [41,50-53], we generate overlapping higher
order residues with 10 different degrees ranging from 2-
to-12 to comprehensively assess the impact of higher order
residues in disentangling rich contextual information for 3
distinct histone sequence analysis tasks.

Furthermore, considering, the performance of machine
learning classifiers is directly proportional to the number of
discriminative higher order residues, we analyze which win-
dow size of overlapping high order residues generates most
discriminative residues for histone occupancy, acetylation,
and methylation prediction tasks. We find that there does
not exist any discriminative residues until 7-mers; however,
afterward (e.g., 8-mers to 12-mers), there exist decent num-
ber of discriminative residues which occur in one class and
absent in other class.

To provide a bird’s eye view of discriminative potential
of different overlapping higher order residues across dif-
ferent classes, we randomly select one data set from each
histone sequence analysis task and reveal the overlapping and
discriminative features for each class for 5 different higher
order residues (8-mers to 12-mers) in form of venn diagrams
(Fig. 1). As shown in Fig. 1, for histone occupancy H3 data
set, in case of 8-mers, positive class has only 20 unique
residues which are not present in the negative class and neg-
ative class has 10 unique residues which are not present in
positive class. Whereas, 65,506 residues are present in both
classes. With the increase of degree of k-mers, discrimina-
tive as well as overlapping residues also increase. A similar
trend can also be seen with histone acetylation (H3K9ac) and
methylation (H3K4mel) data sets.
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Unsupervised distributed representation of histone
sequences (DNA2Vec)

In Natural Language Processing (NLP), two neural embed-
ding generation models, namely, Continuous Bags of Words
(CBOW), and Skipgram have been extensively used to learn
dense word vectors based on their semantic relationships.
Building on the success of these models in diverse NLP,
genomics, and proteomics sequence analysis tasks, we gener-
ate rich distributed representation of histone sequences using
CBOW model in an unsupervised manner (DNA2Vec), work-
flow of which isillustrated in Fig. 2. Asis shown by the figure,
for each histone sequence analysis task, higher order residues
(k-mers) embedding vectors are generated in four steps. First,
a corpus of overlapping high order residues (k-mers) is gen-
erated by combining all the data sets of only corresponding
task. Second, we represent each higher order residue as bag
of sub-mers.

Third, an element wise addition of randomly initialized
vectors of different sub-mers present in high order residues
is performed to generate inner residue distribution aware vec-
tors. Finally, another vector addition is performed using these
embedding vectors and complete high order residue vectors.
In this manner, generated vectors of higher order residues
contain the information about internal residue structure along
with the properties of residues.

The training objective of un-supervised embedding gen-
eration model is to optimize higher order residue embedding
matrix in such a way that model accurately estimates
probability of target higher order residue (over all vocab-
ulary of higher order residues) providing decent contextual
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Fig.2 Workflow of unsupervisedly prepared higher order residue embeddings (DNA2Vec)

information through softmax layer. For each sequence anal-
ysis task, distributed representation of histone sequences
is generated by averaging the distributed representation of
higher order residues present in histone sequences.

Histone-Net approach based on supervised distributed
representation of histone sequences (SuperDNA2Vec)

The infusion of meta information (e.g., task type, task nature)
in the training process of unsupervised distributed repre-
sentation generation model can encapsulate a variety of
inherent relationships. Such information creates a correla-
tion of local as well as global sequence residue distribution
with target task that eventually supports the accurate identifi-
cation of target task. For efficient histone sequence analysis,
we develop a unique distributed representation generation
model (SuperDNA2Vec) which encapsulates histone occu-
pancy, acetylation, and methylation information along with
semantic information of higher order residues using feed-
back mechanism of supervised learning. As shown in Fig. 3,
for each histone sequence analysis task including histone
occupancy, acetylation, and methylation prediction, data sets
of only corresponding task are combined. Using task spe-
cific data set collection, the process of generating task aware
distributed representation of histone sequences starts by
dividing the sequences into higher order residues (K-mers,
e.g., 10-mers). Then, distributed representations of sequences
are learned by averaging the randomly initialized vectors of
higher order residues present in sequences, regularization
of which is performed by applying the dropout rate of 0.5.
The training objective of embedding generation model is to
optimize higher order residue embedding matrix by moni-
toring the cross entropy loss produced while estimating the
probability of target class (over all classes) through soft-
max layer. Through iterative learning, embedding generation

model manages to encapsulate histone occupancy, acety-
lation, and methylation information in embedding matrix.
Precise deep learning model (Fig. 3) without softmax layer
acts as a embedding generation model (SuperDNA2Vec) for
test histone sequences. Whereas, entire deep learning model
(Histone-Net) predicts histone occupancy, acetylation, and
methylation using task aware distributed representation of
histone sequences generated by SuperDNA2Vec model.

Histone-Net: multi-label classification paradigm

Architecture of Histone-Net multi-label classification
paradigm (Supplementary Figure 3) is identical to binary
classification paradigm discussed earlier in “Histone-Net
approach based on supervised distributed representation of
histone sequences (SuperDNA2Vec)” except 2 major differ-
ences. Unlike Histone-Net binary classification paradigm,
where SuperDNA2Vec sequence representation embeds only
one type of task specific information (e.g., occupancy,
acetylation, or methylation) for hand-on data set. In Histone-
Net multi-label classification paradigm, SuperDNA2Vec
sequence representation integrates all four histone marker
type, occupancy, acetylation, and methylation information
at the same time. Another difference is the use of sigmoid
activation function at last layer and binary cross-entropy as
a loss function instead of softmax activation and categorical
cross-entropy loss function.

Benchmark binary classification data sets for
histone occupancy and modification prediction

This section illustrates the details of 10 public bench-
mark histone occupancy and modifications (acetylation and
methylation) prediction data sets [36] used to evaluate
the performance of proposed multi-paradigm computational
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Fig.3 Workflow of supervisedly prepared higher order residues embeddings (SuperDNA2Vec) and Histone-Net approach

Table 1 Statistics of 10 benchmark data sets including 2 data sets for histone occupancy detection, 3 data sets for acetylation and 5 data sets for

methylation level prediction

Data set name Description Positive samples samples
H3 H3 occupancy 7667 7298
H4 H4 occupancy 6480 8121
H3K4mel H3K4 mono-methylation relative 17,266 14,411
H3K4me2 H3K4me2 H3K4 di-methylation relative to H3 18,143 12,540
H3K4me3 H3K4me3 H3K4 tri-methylation relative to H3 19,604 17,195
H3K36me3 H3K36me3 H3K36 tri-methylation relative to H3 18,892 15,988
H3K79me3 H3K79me3 H3K79 tri-methylation relative to H3 15,337 13,500
H3K9ac H3KO9 acetylation relative to H3 15,415 12,367
H3Kl14ac H3K 14 acetylation relative to H3 18,771 14,277
H4ac H4 acetylation relative to H4 18,410 15,686

framework Histone-Net. The process used to prepare 10
benchmark data sets is described in previous studies [54],
here we only summarize the statistics of 10 benchmark data
sets. Table 1 describes the sample-to-label distribution of
2 histone occupancy (H3, H4), 5 methylation (H3K4mel,
H3K4me2, H3K4me3, H3K36me3, H3K79me3), and 3
acetylation data sets (H3K9ac, H3K14ac, H4ac). For acety-
lation and methylation level prediction data sets, K with its
leading number represents the Kth amino acid which has to
be modified with mono, di, or tri acetyl (“ac”) and methyl
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(“me”) modifications. For example, in H3K4mel data set,
4th amino acid of H3 protein is modified with a mono methyl
group.

For each benchmark data set, histone sequences hav-
ing relative occupancy, methylation, and acetylation values
greater than 1.2 belong to positive class and lower than 0.8
belong to negative class. In binary classification paradigm,
Histone-Net is evaluated in intra-domain and cross-domain
settings using 10 benchmark binary classification data
sets.
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Multi-label classification data set for histone
occupancy and modification prediction

This section describes the process used to develop multi-label
classification data set for histone occupancy and modification
prediction.

Figure 4 illustrates the complete workflow used to develop
imbalanced and balanced version of multi-label histone
sequence analysis data set by utilising 10 benchmark datasets
given by [54]. All 10 benchmark data sets have total 2.74
million sequences, where each sequence is annotated with
either 0 or 1. A closer look at sequence ids provided by [54]
reveals that a significant number of sequence ids appear in
multiple histone markers data sets. For instance, consider a
sequence id “ITELL-Chrl_61" which is annotated as 1 in
H3 histone marker data set indicates that the sequence has
histone occupancy more than 1.2, same sequence id is anno-
tated as 0 in H3k4mel histone marker data set indicating
that the sequence methylation level is less than 0.8, and same
sequence id is annotated as 1 in H4kme?2 histone marker data
set indicating that the sequence methylation level is more
than 1.2.

This analysis serves as a basis to formulate multi-label
data set, where each sequence id may have 20 labels at max
instead of 1 label (0 or 1). From 20 labels, 10 labels represent
the association of sequence with positive class distribution of
10 benchmark histone markers, whereas other 10 labels show
the association of sequence with negative class distribution of
10 benchmark histone markers. In this manner, each sequence
target label is represented as a 20-dimensional binary vector,
where 1 is assigned for the association of sequence with pos-
itive class of particular histone marker and 0 is assigned for
the association of sequence with negative class of particular
histone marker. Considering whether multi-label data set is
imbalanced or balanced largely impact the predictor perfor-

«-- Histone Markers Binary Class ANNOtation - - - - - - - mm oo o mm oo

mance, two different versions of multi-label histone sequence
analysis data set are prepared.

Balanced version of multi-label data set is prepared
by eliminating all label cardinalities which have less than
25 sequences, whereas imbalanced version of data set is
obtained by retaining all label cardinalities which have
less than 25 sequences. In this manner, balanced multi-
label data set of 19,088 and imbalanced data set of 22,191
sequences are obtained, sample-to-label distributions of
which are illustrated in Fig. 5. In both imbalanced and
balanced version of multi-label data sets, hepta-label car-
dinality have most number of sequences followed by octa-
label cardinality. In imbalanced version which retains all
label cardinalities, uni-label cardinality has least number of
sequences followed by bi-label cardinality, histone mark-
ers and respective class distribution of which are depicted
in Fig. 6. H3K79me3_neg has most number of uni-label
sequences, whereas H3K4me2_pos-H3K4me?2_pos has most
number of bi-label sequences. Likewise, histone markers
and class distribution of tri-label and tetra-label cardi-
nalities which have more than 25 number of sequences
are shown in Fig. 7. Combination of H3k36me3_pos,
H3k4mel_pos, and H3k4me2_pos has most number of tri-
label sequences, whereas the combination of H3k4me2_pos,
H3K79me3_pos, H3K36me3_pos, and H3K4mel_pos has
most number of tetra-label sequences. Beside trivial binary
classification paradigm, Histone-Net is evaluated in multi-
label classification paradigm using imbalanced and balanced
version of multi-label histone sequence analysis data set.

Evaluation criteria
To perform a comprehensive evaluation of Histone-Net in

binary and multi-label classification paradigm under the hood
of diverse settings, this paper utilizes 15 different evaluation
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Fig.6 Histone markers having less than 25 samples with uni and bi-label cardinalities

metrics, short descriptions of which is provided in following
subsections.

Binary classification evaluation metrics

This paper utilizes 4 most widely used binary classification
evaluation metrics to assess the performance of Histone-
Net framework including accuracy, precision, recall, and
Fl-score. Accuracy is the most simplest evaluation metric
which computes the ratio between correctly predicted his-
tone sequences and total histone sequences. Recall measures
the true positive rate and precision computes the percentage
of correct positive predictions from all positive predictions.
While recall effectively handles type II errors, precision
effectively deals type I errors. F1 Score is considered a
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trade-off among recall and precision that depicts orthogonal
relationship. It is calculated through the weighted average of
recall and precision. Among all, Mathematical expressions
of four different evaluation metrics are given below:

L
Accuracy = %
4
(Rec) Recall = %
fx) = o ()
B ()
(Pre) Precision = arn
_ Pre«Rec
Fl-score = 2 % Pre.Rec”

In Eq. 1, O represents false positives and true positives,
O~ refers to false negatives and true negatives. Total posi-
tive class histone sequences which are accurately identified
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Fig.7 Histone markers having more than 25 samples with tri- and tetra-label cardinalities

as positive referred by O, similarly total negative class his-
tone sequences which are corrected predicted as negative are
expressed using O . Whereas, histone sequences which are
wrongly predicted into positive class (False positives) are
represented as F and histone sequences which are mis-
takenly classified into negative class (False Negatives) are
referred as F, .

Multi-label classification evaluation metrics

To evaluate the performance of Histone-Net in multi-label
classification paradigm, we have utilised 11 different evalu-
ation metrics, namely, accuracy, precision, recall, F1-score,
area under the receiver operating characteristic (AU-ROC),
area under precision recall curve (AU-PRC), average preci-
sion, one error, hamming loss, ranking loss, and coverage.
For multi-label classification, accuracy computes the pro-
portion of accurately predicted label to the total number of
labels, averaged over all sequences present in test set. Preci-
sion computes the proportion of correctly predicted labels to
total number of predicted labels, recall calculates true posi-
tive rate, and F1-score compute harmonic mean of precision
and recall, averaged over all sequences of test set. Hamming
loss is the fraction of miss-classified labels, ranking loss com-
putes the average fraction of reversely ordered label pairs
for each histone sequence. Average precision computes the
proportion of relevant labels in the highest ranked labels.
One error calculates the fraction of histone sequences whose
most confident predicted label is irrelevant. Coverage com-
putes average number of labels which should be included to
cover entire set of relevant labels. Area under precision recall
curve indicates the trade-off among precision and recall. Area
Under Receiver Operating Characteristic (AU-ROC) reveals

the performance of a classifier at various thresholds. It is
important to mention that for most evaluation metrics, higher
performance figures show better performance except ham-
ming loss, ranking loss, one error, and coverage, where lower
performance figures show better performance. Mathematical
expressions of different multi-label evaluation metrics are
provided below:

N YOAFO|
i=1 |yOy50]

_ 1
Accuracy = 3 )
— LyN pOAD]
(Rec) Recall = > sy Rl

ion — L SOV yOA39)
(Pre) Precision = + > /L, 0]

_ 1 N 2x|Pre(x;)*Rec(x;)|
Fl-score = % 3i_1 {PrecuN)+(RectuiD

Hamming Loss = ﬁ 211\]:,‘ Z/L-:l [I(y;i) # )Az;i))]

. N N-1 1
Ranking Loss(y, /) = § * X120 Tyfovtmmer—TorTo)

Average Precision(f, C) = ‘—1{” Zlﬁll D beB;

X 16| frank (aivb‘,)ﬁfmnk (a;,b).b'e Bi}|

frank (@i,
One Error(F) = % Zl{v:l[[arg maxF(x;) ¢ Yl.+]]
Coverage = (y, f) = & * >NV max; . yij=11ank;;

rank;; = |{k: fik > ﬁj}|

fx) = @)

In Eq. 2, N represents total number of sequences, Y; rep-
resents the ground truth label assignment for i th sequence, Y;
represents the predicted label for ith sequence, x; represents
ith sequences, jth represents the class index, A represents
logical AND operator, and V represents logical OR operator.

Experimental setup
Proposed computational framework Histone-Net is imple-

mented using Scikit-Learn [55] and Pytorch [56]. To perform
a fair performance comparison of Histone-Net predictive
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methodologies with state-of-the-art histone occupancy and
modification predictor [36], following Yin et al. [36], in
both adapted DeepHistone [31] and proposed Histone-Net
approach, randomly chosen 90% sequences are used for
training and 10% sequences are used for testing. From 90%
training sequences, 10% sequences are used as a validation
set. We perform a large scale experimentation to develop
an optimal model for histone occupancy and modification
prediction. We assess the performance of DNA2Vec and
SuperDNA2Vec sequence embeddings of 8 different dimen-
sions (25, 32, 50, 64, 75, 100, 128, 150) using three different
machine learning classifiers (RFC, AdaBoost, SVM). These
sequence embeddings are prepared by averaging the statis-
tical vectors of higher order residues present in them. We
find that DNA2Vec and SuperDNA2Vec 100-dimensional
sequence vectors mark best performance for intra-domain
and cross-domain binary classification paradigms, whereas
64-dimensional sequence vectors perform better for multi-
label classification paradigm. In all settings, embedding
generation model is trained for 10 epochs, where we tweak
the dropout from 0.1 to 0.5 only during SuperDNA2Vec
embedding generation. From different batch sizes (32, 64,
128, 256), learning rates (0.001-to-0.008), and decay rates
(0.91-t0-0.99), proposed deep learning approach performs
better when it is trained with a batch size of 64, Adam [57,58]
optimizer decay rate of 0.95, and learning rate of 0.008.

To find optimal hyperparameter values for machine learn-
ing classifier, we tweak quality of split, number of estimators,
kernel type, degree, gamma, and penalty parameter using
GridSearch [59]. We find that tree-based machine learning
classifiers perform better with gini criteria using 50 number
of estimators, discriminative classifier SVM performs bet-
ter with radial basis kernel, degree of 2, penalty parameter
(C) of 273 and gamma value of 0.001. After finding optimal
DNA2Vec and SuperDNA2Vec sequence vectors as well as
hyperparameter values, we perform experimentation with 11
different higher order residues ranging from 2-to-12 to deter-
mine which higher order residue-based sequence embed-
dings comprehensively help the classifier to make accurate
predictions. For 10 benchmark data sets of 3 different histone
sequence analysis tasks, we generate 99 (tasks/unique data
set groups * k-mers * machine learning classifiers = 3 * 11
*3) predictive pipelines for DNA2Vec sequence embeddings
and 330 (data sets * k-mers * machine learning classifiers =
10 * 11 *3) predictive pipelines for SuperDNA2Vec embed-
dings. Proposed Histone-Net approach generates 110 (data
sets * k-mers * deep learning classifiers = 10 * 11 *1) pre-
dictive checkpoints. From different higher order residues,
we find that 7-mers to 11-mers sequence embeddings mark
best performance. More specifically, 7-mers DNA2Vec and
11-mers SuperDNA2Vec sequence embeddings mark best
performance across all classifiers. To evaluate adapted Deep-
Histone approach [31] across 10 benchmark histone markers
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data sets, we utilize the source code and parameters provided
by Yin et al. [31].

Results and discussion

This section performs comprehensive extrinsic and intrin-
sic evaluation of DNA2Vec and SuperDNA2Vec sequence
embeddings. It compares the performance of proposed
approach with machine learning classifiers, adapted convolu-
tional neural network-based approach DeepHistone [31], and
state-of-the-art image representation-based predictor HCNN
[36].

Extrinsic evaluation of DNA2Vec and SuperDNA2Vec
distributed representation in intra-domain setting
using binary classification paradigm

Performance values produced by 3 machine learning classi-
fiers with unsupervised and supervised sequence embeddings
using 5 different higher order residues (7-to-11) are pro-
vided in Supplementary Tables 1 and 2 in terms of 4 distinct
evaluation measures. Furthermore, to analyze which higher
order residue-based supervised and unsupervised sequence
embeddings perform better with what classifier across 3 dif-
ferent histone sequence analysis tasks, performance values
are compared in terms of accuracy and F1 score, graphical
illustrations of which are provided in Fig. 8 and Supplemen-
tary Figure 4, respectively.

A critical performance analysis of supplementary Table 1
indicates that among 3 machine learning classifiers, SVM
classifier marks better performance with un-supervised
sequence embeddings across 3 distinct histone sequence
analysis tasks. Over 2 histone occupancy 5 histone methy-
lation, and 3 histone acetylation prediction data sets, among
all different higher order residues (K-mers), 7-mers sequence
embeddings produce better performance across most
machine learning classifiers.

Furthermore, performance analysis of Supplementary
Table 2 indicates that with the induction of target histone
occupancy and modification information, performance of
all 3 machine learning classifier gets significantly rocketed
over all histone occupancy, methylation, and acetylation data
sets. Higher order residues such as 10-mers and 11-mers
mark superior performance across 10 benchmark data sets
belonging to histone occupancy, acetylation, and methylation
prediction. Among all classifiers, SuperDNA2Vec and soft-
max classifier-based approach (Histone-Net) achieves best
performance across 10 benchmark data sets. Second, best
performance for histone occupancy, acetylation, and methy-
lation prediction tasks across different evaluation metrics is
achieved by SVM classifier.
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Fig. 8 Difference in accuracy of classifiers over 10 different histone occupancy, acetylation and methylation prediction data sets produced using

unsupervised and supervised sequence embeddings

In both bar graphs (Fig. 8, Supplementary Figure 4), it
can be seen that SuperDNA2Vec sequence embeddings sig-
nificantly raises the performance of all classifiers. A bird’s
eye view of the accuracy graph (Fig. 8) reveals that, using
SuperDNA2Vec sequence representation, over both histone
occupancy prediction data sets (H4, H3), among all 4 predic-
tors, Histone-Net performance takes the major leap of almost
37% followed by 33.5% of RFC, 27%, AdaBoost, and 26%
of SVM when compared against the performance produced
using unsupervised higher order residues-based sequence
embeddings. For most methylation prediction data sets, RFC
performance reach the increment figure of 31%, SVM, and
Adaboost performance increases with an average figure of
28%, and Histone-Net incurs 26% increment in performance.
Likewise, across all acetylation prediction data sets (H4ac,
H3K14ac, H3K9ac), SVM and Adaboost performance incre-
ment is identical (31%), RFC marks highest accretion of
32%, whereas Histone-Net performance increases by the fig-
ure of 21% in terms of accuracy.

Using supervised sequence embeddings (SuperDNA2
Vec), assessing the performance rise in terms of Fl-score
(Supplementary Figure 4), among all, Histone-Net perfor-
mance gets rocketed by the average figure of 46% on histone
occupancy prediction data sets (H4, H3). Whereas, RFC
marks the average increment of 47% over acetylation predic-
tion data sets and Adaboost manages to achieve the average
performance increment of 53% for most methylation predic-
tion data sets.

To summarize, higher order residues assist to disentangle
rich contextual information and contribute to learn better dis-
tributed representation. From the comparison of DNA2Vec
and SAuperDNA2Vec, it is evident that SuperDNA2Vec

sequence representation effectively exploits the correlation
of higher order residues with target histone occupancy and
modification information which eventually greatly influences
the performance of all classifiers. Although, all machine
learning classifiers performance produced using unsuper-
vised sequence embeddings gets improved significantly
with the utilization of supervised sequence embeddings
(SuperDNA2Vec); however, among all, softmax classifier
outperforms the top performance of all baseline classi-
fiers with decent margin across most histone markers. It is
important to mention that machine learning classifiers (e.g.,
SVM) marginally performs better than proposed Histone-Net
approach on few histone markers data sets, because these
classifiers make use of SuperDNA2Vec sequence embed-
dings. Here, the aim of analyzing the performance of different
machine learning classifier is to show that even simple clas-
sifiers can produce a performance similar to proposed deep
learning approach using better statistical sequence represen-
tation.

Intrinsic evaluation of DNA2Vec AND SuperDNA2Vec
distributed representation

To analyze whether DNA2Vec or SuperDNA?2 Vec distributed
representation learning scheme generates comprehensive
occurrence and positional information aware vectors for
higher order residues. We perform intrinsic evaluation of both
presented distributed representation generation schemes on
randomly selected three data sets, one from each histone
sequence analysis task. It can be concluded from Sup-
plementary Tables 1 and 2, among different higher order
residues-based sequence embeddings, across 10 different his-
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tone marker data sets, overall, most classifiers perform better
with 7-mer unsupervised and 11-mer supervised sequence
embeddings. Hence, we perform intrinsic evaluation using
only 7-mer unsupervised and 11-mer supervised sequence
embeddings. To effectively visualize the intrinsic patterns
on each selected histone occupancy, acetylation, and methy-
lation data set, we randomly select 10% sequences from
positive as well as negative class, 100-dimensional DNA2Vec
representations of which are passed to PCA approach that
reduces the dimensions from 100 to 25. These 25 dimensional
sequence vectors are finally passed to T-SNE visualizer that
further reduces the dimensions and create mappings in two-
dimensional space, where histone sequences of each class
are represented with unique color.

Likewise, to prepare supervised higher order sequence
embeddings SuperDNA2Vec, each histone occupancy and
modification data set is splitted into train, validations and

test sets containing 80%, 10%, and 10% histone sequences,
respectively. For each histone sequence analysis task, we
utilize the training and validation data to effectively train
SuperDNA2Vec model which is later used to generate
embeddings for histone sequences present in test set. Visual-
ization of histone sequences present in test set is performed
in a similar manner using PCA and T-SNE.

As is depicted by the embedding charts Figs. 9 and 10,
clusters for both positive and negative class produced by
supervised sequence embeddings (SuperDNA2Vec) of all
three selected data sets are far less overlapping as compared
to the charts produced by unsupervised sequence embed-
dings (DNA2Vec), where the clusters are highly overlapping.
In addition, it is quite evident that supervised sequence
embeddings better captures the local and global semantic
composition of higher order residues which eventually assists
to develop optimal sequence clusters. Therefore, building on
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occupancy (H3) data set

these clusters, for new instances, there are strong chances
that un-supervised sequence representation is more likely to
cause mis-classification as compared to supervised sequence
representation, where the chances of correctly classifying the
given instance are far high.

Furthermore, to intrinsically illustrate the discriminative
impact of different higher residues-based SuperDNA2Vec
embeddings, Fig. 11 shows the positive and negative histone
sequence vectors clusters produced using 11 types of higher
order residues for histone occupancy data set H3. It is evident
from Fig. 11 that clusters are highly overlapping at lower
higher order residues (1-mer to 6-mer); however, they are
less overlapping at upper degree higher order residues (7-
mer to 11-mer).

Performance comparison of Histone-Net approach
with adapted and state-of-the-art histone
occupancy and modification predictors

We perform a fair performance comparison of SuperDNA?2
Vec and softmax classifier-based Histone-Net approach with
image representation- based state-of-the-art histone occu-

pancy and modification predictor, namely, “HCNN” [36] and
adapted convolutional neural network-based approach Deep-
Histone [31].

Figure 12 reports the performance of Histone-Net
approach, state-of-the-art HCNN [36] approach, and adapted
DeepHistone [31] approach over 10 different histone occu-
pancy, methylation and acetylation prediction data sets in
terms of accuracy. Performance of proposed Histone-Net,
state-of-the-art HCNN [36], and adapted DeepHistone [31]
approach in terms of other evaluation metrics (e.g., precision,
recall) is given in Supplementary Table 3. Considering bag-
of-words and one-hot encoding approaches face the issue of
data sparsity and fail to consider deep contextual informa-
tion of higher order residues, HCNN transformed histone
sequences into 2-dimensional image-like arrays to magnify
the strengths of convolutional neural network by making use
of space-filling curves (Hilbert curve). HCNN [36] man-
aged to outshine SVM, [34] CNN, and LSTM [35,36]-based
approaches with a decent margin. As illustrated in Fig. 12, for
both histone occupancy prediction data sets (H3,H4), on aver-
age, HCNN achieves the performance figures around 87%.
For most methylation prediction data sets, HCNN average
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Accuracy values of HCNN are taken from Table 3 of Yin et al. [36]

performance falls around 75% except H3k79me3 data set,
where it crosses the figure of 80% when evaluated in terms
of accuracy, precision, and recall. Similarly, for acetylation
prediction data set, it manages to mark the performance of
nearly 80%.

To perform a rich performance assessment of proposed
Histone-Net approach, we adapt a convolutional neural
network-based approach DeepHistone proposed by Yin et al.
[31]. Adapted DeepHistone process raw histone sequences,
statistical representation of which is generated using one-hot
encoding scheme. As shown in Fig. 12, DeepHistone only
manages to achieve over 85% accuracy on 2 histone occu-
pancy prediction data sets, over 80% accuracy on only 1
histone methylation prediction data set (H3K79me3) from
5 histone methylation prediction data sets, and over 70%
accuracy on 3 histone acetylation prediction data sets. The
reasons behind the limited performance of DeepHistone [31]
in comparison to state-of-the-art HCNN [36] is the use of
sub-optimal statistical representation learning scheme which
lacks to capture translational invariance of residues.

Although image-based sequence representation approach
successfully extracts discriminative higher order residues-
based features, however, it still fails to acquire the com-
prehensive semantic information of diverse higher order
residues. In addition, image-based sequence representation
approach fails to extract correlations and diverse inter-
actions of higher order residues important for concerned
histone sequence analysis task. Due to these factors, the
idea of incorporating target histone occupancy and modi-
fication information while generating distributed represen-
tation of higher order residues through language modelling
(SuperDNA2Vec) proves extremely effective.

SuperDNA2Vec sequence embedding scheme largely
assists the softmax classifier in achieving superior perfor-
mance than HCNN [36] across 10 different benchmark data
sets. While for histone occupancy and acetylation predic-
tion data sets (H3,H4), on average, Histone-Net performance
falls around 90% and 86%, respectively. Whereas, for most
methylation prediction data sets, its performance crosses the
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work and accuracy values of DeepHistone are obtained by processing
raw histone sequences of various histone markers using convolutional
neural network model presented by the authors [31]

landmark of 85% and on H3k79me3 data set it manages to
achieve the top performance of 90% when assessed in terms
of accuracy, precision, and recall. Likewise, Histone-Net sig-
nificantly outperforms adapted DeepHistone [31] approach
across all 10 benchmark histone markers data sets for 3 differ-
ent histone sequence analysis tasks. For histone occupancy
prediction, on average, Histone-Net achieves an increment
of 3%, for histone methylation prediction, it attains an
increment of 15% and for histone acetylation prediction, it
achieves an increment of 14%. A similar performance trend
in terms of other evaluation metrics can be seen in Supple-
mentary Table 3.

In a nutshell, a different application of language mod-
elling, where sequence embeddings are learned by taking
the association of higher order residues with target histone
occupancy and histone modification into account outper-
forms bag-of-words, one-hot encoding, image-based, and
un-supervised higher order residues-based sequence rep-
resentation schemes. SuperDNA2Vec effectively captures
comprehensive long-range dependencies of higher order
residues, their unique interactions, and occurrence in the dis-
tribution of diverse histone proteins. Using SuperDNA2 Vec,
simple softmax classifier manages to outperform state-of-
the-art image representation and CNN-based histone occu-
pancy, acetylation, and methylation predictor with significant
margin.

Evaluation of Histone-Net approach in cross-domain
binary classification paradigm

In biomedical sequence analysis, generally, cross-domain
evaluation is used to examine the effectiveness of compu-
tational predictors for practical applications. Considering
existing histone occupancy and modification predictors are
not evaluated in cross-domain setting, we validate the gen-
eralization potential of Histone-Net approach by performing
cross-domain evaluation. In cross-domain setting, for histone
occupancy sequence analysis task, Histone-Net approach
is trained over the sequences of different histone markers
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belonging to Histone occupancy and tested on one of the
test set of particular histone marker. This process is repeated
to ensure that Histone-Net approach is evaluated on the test
set of each histone marker belonging to histone occupancy.
Similar process is repeated for histone acetylation and methy-
lation prediction tasks to ensure that Histone-Net is not biased
towards specific histone marker data. In this manner, cross-
domain performance of Histone-Net approach over test sets
of 10 benchmark data sets belonging to 3 distinct histone
sequence analysis task is computed.

Like intra-domain setting, in cross-domain setting, perfor-
mance of Histone-Net approach is assessed using 5 different
higher order residues (7-to-11). Table 2 summarizes the peak
performance achieved by Histone-Net approach under dif-
ferent higher order residues over the test sets of 10 different
benchmark data sets belonging to histone occupancy, acety-
lation, and methylation prediction. As indicated in Table 2,
just like intra-domain setting, Histone-Net achieves top per-
formance of around 86% in terms of 4 different evaluation
metrics using upper degree higher order residues (11-mers)-
based sequence representation in cross-domain setting for
the task of histone acetylation prediction. Whereas, for 2
other histone sequence analysis tasks including Histone
Occupancy and Histone Methylation prediction, unlike intra-
domain setting, here Histone-Net marks better performance
with medium degree higher order residue (7-mers)-based
sequence representation. For histone occupancy, Histone-Net
achieves best performance of 71% on test set of H3 histone
marker as compared to H4 across all 4 evaluation metrics.
For histone acetylation prediction, Histone-Net achieves bet-
ter performance of 86% on test set of H4ac followed by
H3K14ac and H3K9ac. Whereas, for histone methylation
prediction, Histone-Net attains best performance of 72% on
the test of H3K79me3 data set.

Empirical evaluation on the test sets of 10 benchmark
data sets belonging to 3 distinct histone sequence analysis
tasks indicates that Histone-Net manages to attain the aver-
age performance of more than 80% for histone acetylation

(H3K14ac, H3K9ac, H4ac), 70% for histone occupancy, and
60% for histone methylation prediction. Across 10 bench-
mark data sets, compared to average performance of 87%
and peak performance of 90% achieved by Histone-Net in
intra-domain setting, Histone-Net manages to attain an aver-
age performance of 70% with the peak performance of 86%
in cross-domain setting. Usually, the performance of compu-
tational approaches drops up to great extent when evaluated
using cross-domain paradigm; however, SuperDNA2Vec and
softmax classifier- based Histone-Net methodology shows
decent generalization potential across a variety of data sets
belonging to 3 distinct histone sequence analysis tasks.

Evaluation of Histone-Net approach in multi-label
classification paradigm

This sections briefly describes the performance of Histone-
Net multi-label classification paradigm using balanced and
imbalanced version of multi-label data set in terms of 11
different evaluation metrics. To better quantify the effective-
ness of Histone-Net multi-label classification paradigm, it
compares the performance of Histone-Net with an adapted
convolutional neural network-based methodology DeepHis-
tone [31].

Supplementary Table 4 reports the performance pro-
duced by Histone-Net over im-balanced and balanced version
of multi-label histone occupancy and modification predic-
tion data set using different higher order residues-based
SuperDNA2Vec sequence embeddings. As is evident by Sup-
plementary Table 4, across both versions of multi-label data
set, Histone-Net performance almost gradually improves by
increasing the degree of higher order residues, indicating
Histone-Net achieves best performance with upper degree
higher order residues (10-mers, 11-mers)-based supervised
sequence embeddings across all evaluation metrics. Fur-
thermore, across all different higher order residue thresh-
olds, Histone-Net achieves slightly better performance on
balanced version of multi-label data set as compared to

Table 2 Performance produced

by Histone-Net using different Histone marker test set K-mers Accuracy Precision Recall F1 score

degree higher order H3 0.7112 0.7214 0.7112 0.7069

residue-based sequence

representation in cross-domain H4 0.6753 0.6894 0.6753 0.6742

setting H3K14ac 10 0.8493 0.8461 0.8493 0.8495
H3K9%ac 10 0.8297 0.8321 0.8297 0.8285
H4ac 11 0.8618 0.8625 0.8618 0.8615
H3K4mel 7 0.5792 0.5724 0.5792 0.565
H3K4me2 7 0.5913 0.5717 0.5913 0.5869
H3K4me3 7 0.4511 0.4433 0.4511 0.4471
H3K79me3 7 0.7153 0.7146 0.7153 0.7146
H3K36me3 7 0.6127 0.6087 0.6127 0.6103
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imbalanced version in terms of most evaluation metrics. i ) 2 2 Qg
On balanced version of multi-label data set, Histone-Net 3 % § E E §
achieves the Fl-score of 72% and hamming loss of 0.20 E Ol = == =
which surpasses the Histone-Net performance achieved on —g 2
imbalanced version by the figure of 3% and 1%. 5 L:D

Furthermore, Table 3 compares the performance of 3 E o = .~ o
Histone-Net approach with adapted DeepHistone approach é g :?: 5 5 g
using imbalanced and balanced versions of multi-label his- ‘::; Tl <SS
tone occupancy and modification prediction data set. It is 3 5
evident from Table 3 that Histone-Net significantly outper- 3) r% 29 d 5
forms adapted DeepHistone approach across all 11 evalua- S |81 3232
tion metrics. On im-balanced version of multi-label histone % .
occupancy and modification prediction data set, Histone-Net f 8
achieves the accuracy increment of 14%, precision incre- %’ g) oom oo o®
ment of 8%, recall increment of 21%, F1-score increment of :<Zt FERER
15%, average precision increment of 13%, AU-PRC incre- % “le = e
ment of 18%, AU-ROC increment of 12%, hamming loss US; 8 oo
improvement of 7%, and coverage improvement of 2%. 2 Kle Q3
On the balanced version of multi-label histone occupancy g <Dt S 383
and modification prediction data set, Histone-Net achieves § O
the increment of 10%, 4%, 15%, 10%, 15%, 17%, 10%, 2 Bl T3 I
5%, and 2% in terms of aforementioned distinct evaluation &, 5:) Bt &3
metrics. On average, Histone-Net supersedes the perfor- 'q'g s==-<
mance of adapted DeepHistone by the figure 10% and 8% 5 g
on im-balanced and balanced version of multi-label histone E‘) §
occupancy and modification prediction data set, respectively. = §

Furthermore, to analyze the effectiveness of proposed % Fla T OE
Histone-Net approach for accurately predicting most number o :% E 3 E §
of samples of each histone marker, we utilize one-versus- 2 e e
all strategy to generate 20 binary confusion matrices for 10 o 22 R
histone markers for imbalanced (Supplementary Figure 5) j% W | = A R
and balanced version of multi-label data set (Supplementary % 8 o o
Figure 6). In one-versus-all strategy, false positives, false Aa g ?3‘ 438 8 =
negatives, true negatives, and true positives, are computed B § 2ls28S
by treating one particular histone marker class as positive §‘ ;5 o
and all other histone markers classes belonging to same his- - 5 j% FInax
tone sequence analysis task as negative irrespective of the § g g g g 5 §
multi-label problem. More specifically, we want to evalu- 2 8
ate the behaviour of Histone-Net when there is a decent gap g E %‘ v o=l
between the total number of positive and negative sequences. é’ ° § E é E § 2

A critical analysis of 20 confusion matrices (Supplemen- 3 % <| S S S S |s
tary Figure 5) produced by Histone-Net over imbalanced g = = = g
data set shows that overall 64% positive histone marker 23 peY o E’)
appearances and 82% negative histone marker appearances Y _gc: 3 é 3 é E‘)
(represented as rest) are correctly predicted by Histone-Net. -§ |3 g é ) E g
Top true positive figure of 89% is achieved on H3 his- '§~f £ ‘% g@‘ ‘% @ 8
tone marker, whereas top true negative figure of 94% is :‘3;% AlE AT A Eo
achieved on H3ac histone marker. Among histone markers g« 3 8
related to occupancy, higher number of positive and negative § g g 2 é
sequences are correctly classified on H3 makers as compared E, § % _%‘ Lé
to H4. Among histone markers related to acetylation, most 3|2 8 'q‘g ;-’4
number of positive class sequences are accurately classified 2 E pé E g i;:’b
in H3K14ac histone marker with the performance around SE|A|E 3 T
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82%, whereas most number of negative class sequences are
correctly predicted in H34ac histone maker with the per-
formance around 95%. Turning towards the performance
of methylation related histone markers, 80% positive class
sequences are corrected classified in 3 histone markers
(H3K36me3, H3K4mel, H3K4me3), whereas 88% negative
class sequences are correctly predicted by Histone-Net on
H3K79me3 histone marker.

In one-versus-all setting as negative class gets more num-
ber of samples which is why usually there exist a huge gap
between the performance of positive and negative class; how-
ever, here, the gap is not large at all due to the robustness of
Histone-Net approach towards imbalance class distribution.

In imbalanced version of multi-label data set, there exist
only 5 uni-label and 24 bi-label sequences which are too lit-
tle for effective model training. Considering uni-label and
bi-label sequences act as a noise and derail the generalizabil-
ity of classifier, we perform experimentation on balanced
version of multi-label data set prepared after eliminating all
uni-label and bi-label sequences. Performance analysis on
20 confusion matrices produced by Histone-Net on balanced
version of multi-label data set (Supplementary Figure 6)
reveals that overall 66% positive and 80% negative histone
marker appearances are predicted accurately.

Across different histone markers, overall Histone-Net
marks better performance on balanced version of multi-label
data set as compared to imbalanced version of multi-label
data set (Supplementary Figures 5 and 6). Highest true posi-
tive figure of 97% and true negative figure of 99% is achieved
on H3 and H4ac histone markers, respectively, achieving an
increment of 8% and 5% as compared to the peak perfor-
mance achieved by Histone-Net on imbalanced version of
data set. From histone markers related to occupancy, while
most number of positive sequences are corrected predicted
in H3 histone marker, higher number of negative sequences
are correctly classified in H4 histone marker. Among histone
markers related to acetylation, greater number of positive
class sequences are accurately classified in H3K14ac his-
tone marker with the performance around 86%, whereas most
number of negative class sequences are correctly predicted in
H34ac histone maker with the performance around 99%, out-
performing the performance attained on imbalanced version
by 4%. Concerning the performance of methylation related
histone markers, 93% positive class sequences are corrected
classified in H3K36me3 histone marker, whereas 89% neg-
ative class sequences are correctly predicted by Histone-Net
on H3K4me?2 histone marker, achieving ac increment of 13%
and 1%, respectively, when compared with top performance
attained by Histone-Net on methylation histone marker of
imbalanced data set.

In a nutshell, across different evaluation metrics, although
average performance figures attained by Histone-Net on
imbalanced and balanced version of multi-label data set are

comparable. However, a close look indicates that across most
histone markers, Histone-Net achieves better performance
on balanced version of multi-label data set as compared to
imbalanced version.

To identify up to what degree Histone-Net manages to
simultaneously predict histone-occupancy, acetylation, and
methylation areas in novel histone sequences, performance of
Histone-Net is analyzed over imbalanced and balanced ver-
sion of multi-label data set in terms of multi-label confusion
matrices corresponding to unique sample-label distributions.
In both versions multi-label data set, number of correctly pre-
dicted histone markers out of all actual histone markers are
highlighted in confusion matrices (Fig. 13).

For imbalanced version of multi-label data set, a closer
look at sample-label distribution (Fig. 13) and confusion
matrix (Fig. 13) reveals that, Histone-Net manages to make
accurate prediction for 90% uni-label sequences as only
1 sequence is miss-classified out of 5 sequences. For bi-
label sequences, it correctly predict 46% sequences, because
11 bi-label sequences are correctly classified out of 24
sequences. For tri-label sequences, Histone-Net performance
drops further, where it only manages to identify the target his-
tone markers of 31% sequences. For tetra-label sequences,
Histone-Net achieves best performance around 83% as it
makes correct predictions for 260 sequences out of 314
sequences. However, afterward, with the increase of his-
tone marker combinations, Histone-Net best performance of
83% keeps on declining with great margin, dropping to 51%,
25% 26%, and 22%, for penta, hexa, hepta, and octa-label
sequences, respectively, achieving lowest performance 15%,
9% on highest label cardinalities including nona-label and
deca-label sequences.

On the other hand, for balanced version of multi-label
data set, uni and bi-label samples are removed from the
data set and label cardinalities which have 25 or more
samples are kept. For tri-label and tetra-label sequences,
Histone-Net manages to correctly predict 60% and 26%
sequences. Afterward, with the increase of label cardinality,
unlike imbalanced data set, here Histone-Net performance
decreases with less margin, it manages to correctly pre-
dict penta, hexa, hepta, and octa-label sequences with 49%,
44%, 32%, and 23% accuracy. However, for highest label
cardinalities such as nona-label and deca-label sequences,
Histone-Net once again only manages to correctly predict
11% and 9% sequences. Overall, Histone-Net achieves bet-
ter performance on balanced version of multi-label data set.
For balanced version of data set, Histone-Net achieves better
performance with medium to higher level of histone marker
combinations. Whereas, for imbalanced version, Histone-
Net achieves better performance with low to medium level of
histone marker combinations. However, for highest histone
marker combinations (9 and 10), Histone-Net makes correct
prediction for only 10% of sequences.
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Fig. 13 Performance figures produced by Histone-Net over imbalanced and balanced version of multi-label data sets corresponding to unique

sample-label distributions

To summarize, a comprehensive evaluation of Histone-
Net in multi-label sequence classification paradigm using
imbalanced and balanced data sets proves the capability
of Histone-Net for simultaneously predicting histone type,
occupancy, acetylation, and methylation levels in histone
sequences. Furthermore, Histone-Net achieves decent per-
formance on both imbalanced and balanced version of
multi-label data set, showing its robustness to handle diverse
data and sample-to-label distributions.

@ Springer

An interactive and user-friendly Histone-Net
web server

Histone-Net web server makes the lives of genomics
researchers and practitioners easier by facilitating an inter-
active and user-friendly web interface capable to perform
robust histone sequence analysis. Unlike other web server
developed for biomedical sequence analysis which only sup-
ports inference on new sequences and even that for one
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particular task. Histone-Net web server can be used to per-
form and visualize a multi-dimensional exploratory analysis
of histone sequences. In addition, it can be used to train
diverse predictive pipelines from scratch, tweak most cru-
cial hyper-parameters, inference on new histone sequences
for a variety of histone sequence analysis tasks including his-
tone occupancy, acetylation, or methylation level prediction
under binary and multi-label classification paradigm. Differ-
ent modules of Histone-Net web server provide interactive
session artifacts which can be downloaded and used for var-
ious purposes.

Conclusions

Researchers have experimented with a variety of statisti-
cal representation learning approaches and strategies (from
distributed representation to attention mechanism) to cap-
ture relatedness of residues, their diver interactions, and
distribution among different classes. This paper develops
unsupervised higher order residues embeddings of histone
sequences using FastText model and explores a different
application of FastText model to develop SuperDNA2Vec
which encapsulates histone occupancy and modification
information while learning higher order residues embed-
dings in a supervised manner. It presents a computational
multi-paradigm framework Histone-Net to perform a com-
prehensive intrinsic and extrinsic evaluation of 2 differently
learned embeddings using 3 machine learning classifiers.
In addition, it develops a precisely deep neural network
Histone-Net for robust histone occupancy, acetylation, and
methylation prediction. A comprehensive empirical eval-
uation of Histone-Net in intra-domain and cross-domain
settings under the hood of binary and multi-label classifica-
tion paradigms proves its effectiveness over state-of-the-art,
generalization potential across multiple histone markers, and
aptitude to simultaneously predict histone type, its occu-
pancy, acetylation, and methylation levels.

Supplementary Information  The online version contains supplemen-
tary materialavailableathttps://doi.org/10.1007/s40747-022-00802-w.
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