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Abstract
In order to provide benchmark performance for Urdu text document classification, the contribution of this paper is manifold.

First, it provides a publicly available benchmark dataset manually tagged against 6 classes. Second, it investigates the

performance impact of traditionalmachine learning-basedUrdu text document classificationmethodologies by embedding 10

filter-based feature selection algorithms which have been widely used for other languages. Third, for the very first time, it

assesses the performance of various deep learning-based methodologies for Urdu text document classification. In this regard,

for experimentation, we adapt 10 deep learning classification methodologies which have produced best performance fig-

ures for English text classification. Fourth, it also investigates the performance impact of transfer learning by utilizing

Bidirectional Encoder Representations from Transformers approach for Urdu language. Fifth, it evaluates the integrity of a

hybrid approach which combines traditional machine learning-based feature engineering and deep learning-based automated

feature engineering. Experimental results show that feature selection approach named as normalized differencemeasure along

with support vector machine outshines state-of-the-art performance on two closed source benchmark datasets CLE Urdu

Digest 1000k, and CLE Urdu Digest 1Million with a significant margin of 32% and 13%, respectively. Across all three

datasets, normalized difference measure outperforms other filter-based feature selection algorithms as it significantly uplifts

the performance of all adoptedmachine learning, deep learning, and hybrid approaches. The source code and presented dataset

are available at Github repository https://github.com/minixain/Urdu-Text-Classification.
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1 Introduction

Textual resources of diverse domains such as academia and

industries are growing enormously over the web due to the

rapid growth of technology [1, 2]. According to a recent

survey of data facts, users have only utilized 0:5% of all

electronic textual data [3]. The amount of electronic textual

data which has been created in last two years is way more

than the data created by entire human race previously [3].

This marks the desperate need of classifying or categoriz-

ing such humongous electronic textual data in order to

enable the processing of text at large scale and for the

extraction of useful insights. With the emergence of com-

putational methodologies for text classification, multifari-

ous applications have been developed such as email spam

detection [4], gender identification [5], product review

analysis [6], news categorization [7–9] and fake news

detection [10–12] for various languages like English,

Arabic, and Chinese. However, despite crossing the land-

mark of 100 million speakers [13], Urdu language is still

lacking in the development of such applications. The pri-

mary reason behind this limited progress is the lack of

publicly available datasets for Urdu language. Urdu text

document classification datasets used in the previous works

are private [14–19] which further restricts the research and

fair comparison of new methodologies. In order to over-

come this limitation, the paper in hand provides a new

publicly available dataset in which news documents are

manually tagged against six different classes.

On the other hand, regarding the improvement in per-

formance of traditional machine learning-based text doc-

ument classification methodologies, feature selection has

played a significant role in various languages such as

English, Arabic, and Chinese [20, 21]. The ultimate aim of

feature selection is to eliminate irrelevant and redundant

features [22]. Feature selection alleviates the burden on

classifier which leads to faster training [23, 24]. It also

assists the classifier to draw better decision boundary which

eventually results in accurate predictions [23, 24]. State-of-

the-art machine learning-based Urdu text document clas-

sification methodologies lack discriminative feature selec-

tion techniques [19]. In this paper, we embed ten most

anticipated filter-based feature ranking metrics in tradi-

tional machine learning pipeline to extrapolate the impact

created by the set of selected top k features over the per-

formance of support vector machine (SVM) [25] and Naive

Bayes (NB) [26] classifiers.

Although feature selection techniques reduce the

dimensionality of textual data up to great extent, traditional

machine learning-based text document classification

methodologies still face the sparsity problem in bag-of-

words-based feature representation techniques [27, 28].

Bag-of-words-based feature representation techniques

consider unigrams, n-grams or specific patterns as features

[27, 28]. These algorithms do not capture the complete

contextual information of data and also face the problem of

data sparsity [27, 28]. These problems are solved by word

embeddings which do not only capture syntactic but

semantic information of textual data as well [29]. Deep

learning-based text document classification methodologies

provide end-to-end system for text classification by

automating the process of feature engineering and are

outperforming state-of-the-art machine learning-based

classification approaches [30–35].

Although there exists some work on the development of

pre-trained neural word embeddings (Haider et. al [36], and

FastText1) for Urdu language, no researcher has utilized

any deep learning-based methodology or pre-trained neural

word embeddings for Urdu text document classification.

Here, we thoroughly investigate the performance impact of

10 state-of-the-art deep learning methodologies using pre-

trained neural word embeddings. Among all, 4 method-

ologies are based on a convolutional neural network

(CNN), 3 on a recurrent neural network (RNN), and 3 of

them are based on a hybrid approach (CNN?RNN). Pre-

trained neural word embeddings are just shallow repre-

sentations as they fuse learned knowledge only in the very

first layer of deep learning model, whereas rest of the

layers still require to be trained using randomly initialized

weights of various filters [37]. Moreover, although pre-

trained neural word embeddings manage to capture

semantic information of words but fail to acquire high-

level information including long-range dependencies,

anaphora, negation, and agreement for different domains

[37–39]. Considering the recent trend of utilizing pre-

trained language models to overcome the downfalls of pre-

trained neural word embeddings [40, 41], we also explore

the impact of language modelling for the task of Urdu text

document classification.

However, due to the lack of extensive research, finding

an optimal way to acquire maximal results on diverse

natural language processing tasks through the use of

Bidirectional Encoder Representations from Transformers

(BERT) [42] is not straightforward at all [43–45]. For

instance, whether pre-training BERT [42] on domain-

specific data will produce good results, or fine-tuning

BERT [42] for target tasks or multitask learning would be

an optimal option [43–45]. In this paper, we thoroughly

investigate multifarious ways to fine-tune pre-trained

multilingual BERT [42] language models and provide key

insights to make the best use of BERT [42] for Urdu text

document classification.

1 https://fasttext.cc/docs/en/crawl-vectors.html.

5438 Neural Computing and Applications (2021) 33:5437–5469

123

https://fasttext.cc/docs/en/crawl-vectors.html


Previously, we proposed a robust machine and deep

learning-based hybrid approach [46] for English text doc-

ument classification. The proposed hybrid methodology

reaped the benefits of both machine learning-based feature

engineering and automated engineering performed by deep

learning models which eventually helped the model to

better classify text documents into predefined classes [46].

Hybrid approach significantly improved the performance of

text document classification on two publicly available

benchmark English datasets 20-Newsgroup2, and BBC3

[46]. This paper investigates whether utilization of both

machine and deep learning-based feature engineering is

versatile and effective enough to replicate promising per-

formance figures with a variety of deep learning models for

Urdu text document classification. Extensive experimen-

tation with all machine and deep learning-based method-

ologies is performed on two closed source datasets, namely

CLE Urdu Digest 1000k, CLE Urdu Digest 1Million, and

one newly developed dataset, namely DSL Urdu news.

Among all machine learning-based methodologies,

Naive Bayes [26] with Normalized Difference Measure

[47] marks the highest performance of 94% over newly

developed DSL Urdu news dataset, whereas SVM [25]

proves dominant over both close source datasets CLE Urdu

Digest 1000k, CLE Urdu Digest 1Million by marking the

performance of 92% with normalized difference measure

[47], and 83% with Chi-squared (CHISQ) [48]. On the

other hand, trivial adopted deep learning-based method-

ologies manage to outshine state-of-the-art performance by

the margin of 6% on CLE Urdu Digest 1000k, and 1% on

CLE Urdu Digest 1Million. Contrarily, hybrid methodol-

ogy which leverages machine and deep learning-based

feature engineering [46], and BERT [42] mark similar

performance across all three datasets. These methodologies

outperform state-of-the-art performance with the figure of

18% on CLE Urdu Digest 1000k, 10% on CLE Urdu Digest

1M datasets, and almost equalize the promising perfor-

mance figures of machine learning-based methodology

over DSL Urdu news dataset.

The remaining paper is distributed into following sec-

tions. First section deep dives into contributions along with

their anticipated impacts, followed by previous work solely

related to Urdu Text Document Classification followed by

a detail explanation of text document classification

methodologies used in this paper. Then, all datasets are

elaborated comprehensively. Afterwards, experimental

setup and results are revealed in subsequent sections.

Finally, we summarize the key points and give future

directions.

2 Contributions: a review in a nutshell
with anticipated impacts

Researchers have employed variety of ways to improve the

classification performance for multifarious textual data

ranging from trivial documents to convoluted genomic

sequences [49]. To name a few, while some researchers

have tried different data re-sampling approaches and

machine learning classifiers (e.g. generative, probabilistic,

and ensemble classifiers (bagging, boosting)) [50], others

have employed more effective feature engineering

approaches (feature representation and selection) and less

biased evaluation matrices [21, 51, 52]. On the other hand,

with the revolutionary success brought by deep learning-

based classification approaches, in recent times, some

researchers have utilized variety of neural word embed-

dings, activation and loss functions, precisely deep (MLP)

and reasonably deep standalone (CNN, RNN) or hybrid

neural networks (CNN?RNN) and model parameters

optimization approaches to achieve optimal classification

performance [53]. Contrarily, other researchers have

achieved promising performance figures through transfer

learning [54] (using pre-trained language models or train-

ing language model from scratch in an un-supervised

manner and then fine-tuning over target task).

However, a comprehensive review of variety of machine

and deep learning-based classification approaches with

every minor detail of model parameters is quite scarce

especially for under-resourced languages like Nastaleeq

Urdu. In addition, despite the fact that different filter-based

feature selection approaches have significantly raised the

performance of machine learning classifier, no work has

been performed to assess the impact of variety of filter-

based feature selection approaches for deep learning

models.

Building on above discussion, the current study attempts

to perform a comprehensive comparative analysis of

machine and deep learning-based classification approaches

using variety of feature representation and feature selection

approaches. Contributions of this work are summarized as

below:

1. Development of a publicly available dataset that

contains 662 documents of six different classes

(health-science, sports, business, agriculture, world,

and entertainment) containing 130 K words for Urdu

text document classification.

2. For machine learning-based text document classifica-

tion, optimal combination of feature selection approach

and classification algorithm is found through rigorous

experimentation with 10 filter-based feature selection

algorithms such as balanced accuracy measure (ACC2)

[55], normalized difference measure (NDM) [47],
2 http://archive.ics.uci.edu/ml/datasets/twenty?newsgroups.
3 http://mlg.ucd.ie/datasets/bbc.html.
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max–min ratio (MMR) [21], relative discrimination

criterion (RDC) [56], information gain (IG) [57], Chi-

squared (CHISQ) [48], odds ratio (OR) [58], bi-normal

separation (BNS) [55], Gini index (GINI) [59], Pois-

son’s ratio (POISON) [60] and predefined benchmark

test points. This will save a significant amount of time

and effort of application developers.

3. For deep learning-based text document classification,

impact of 10 filter-based feature selection algorithms is

assessed over 10 state-of-the-art standalone and hybrid

neural networks to find most optimal filter-based

feature selection algorithm for deep learning models.

This will largely assist deep learning researchers in the

selection of most discriminative features from very

high-dimensional feature vectors.

4. Considering the lack of research to optimize most

widely used pre-trained multilingual language model

Bidirectional Encoder Representations from Trans-

formers (BERT [42]) for acquiring better performance

over target tasks, performance of BERT is assessed

with base vocabulary and using the vocabulary gener-

ated by top filter-based feature selection algorithm.

Also, key steps to better fine-tune BERT for text

classification are also provided. This facilitates how

effective is the vocabulary generated by top filter-based

feature selection algorithm for a language model and

which parameters with what values play more crucial

role in raising the classification performance.

5. The effectiveness of a previously proposed hybrid

approach [46] which reaps the benefits of traditional

feature engineering and deep learning-based automated

feature engineering is thoroughly investigated for Urdu

text document classification using variety of classifiers

and Urdu datasets. This alleviates the sole reliance of

researchers on automated feature engineering per-

formed by deep learning models and will encourage

them to employ different approaches to further

improve the feature engineering of deep learning

models.

3 Related work

Text document classification methodologies can be cate-

gorized into rule-based and statistical approaches. Rule-

based approaches utilize manually written linguistic rules,

whereas, statistical approaches learn the association among

multifarious features and class labels in order to classify

text documents into predefined classes [61]. This section

briefly illustrates state-of-the-art statistical work on Urdu

text document classification.

Ali et al. [14] compared the performance of two clas-

sifiers, namely Naı̈ve Bayes (NB) [26], and Support Vector

Machine (SVM) [25] for the task of Urdu text document

classification. They prepared a dataset by scrapping various

Urdu news websites and manually classified them into six

categories (news, sports, finance, culture, consumer infor-

mation and personal information). Based on their experi-

mental results, they summarized that SVM [25]

significantly outperformed Naive Bayes [26]. Their

experiments also revealed that stemming decreased the

overall performance of classification.

Usman et al. [15] utilized maximum voting approach in

quest of classifying Urdu news documents. The news

corpus was divided into seven categories, namely business,

entertainment, culture, health, sports, and weird. After

tokenization, stop words removal, and stemming, they

extracted 93400 terms and fed them to six machine learn-

ing classifiers, namely Naı̈ve Bayes (NB), linear stochastic

gradient descent (SGD) [62], multinomial Naı̈ve

Bayes (MNB), Bernoulli Naı̈ve Bayes (BNB) [63], linear

SVM [25], and random forest classifier [64]. Then, they

applied max voting approach in such a way that the class

selected by majority of the classification algorithms was

chosen as final class. Experimentally, they proved that

linear SVM [25] and linear SGD [62] showed better per-

formance on their developed corpora.

Sattar et al. [17] performed Urdu editorials classification

using Naı̈ve Bayes classifier. Moreover, most frequent

terms of the corpus were removed to alleviate the dimen-

sionality of data. Their experimental results showed that

Naı̈ve Bayes classifier performs well when it is fed with

frequent terms as compared to feeding all unique terms of

the corpus.

Ahmed et al. [16] performed Urdu news headlines

classification using support vector machine (SVM) [25]

classifier. They utilized a TF-IDF-based feature selection

approach which removed less important domain-specific

terms from underlay corpus. This was done by utilizing the

threshold paradigm on TF-IDF score which enabled the

extraction of those terms that had higher TFIDF than

defined threshold value. After preprocessing and threshold-

based term filtration, they used SVM [25] classifier to make

predictions.

Zia et al. [18] evaluated the performance of Urdu text

document classification by adopting four state-of-the-art

feature selection techniques, namely information gain (IG)

[57], Chi-square (CS) [48], gain ratio (GR) [65], and

symmetrical uncertainty [66] with four classification

algorithms (K-nearest neighbours (KNN) [67], Naı̈ve

Bayes (NB), decision tree (DT), and support vector

machines (SVM) [25]. They found that for larger datasets,

performance of SVM [25] with any of the above-mentioned

feature selection technique was better as compared to
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Naı̈ve Bayes [26] which was more inclined towards small

corpora.

Adeeba et al. [19] presented an automatic Urdu text-

based genre identification system that classified Urdu text

documents into one of the eight predefined categories,

namely culture, science, religion, press, health, sports,

letters, and interviews. They investigated the effects of

employing both lexical and structural features on the per-

formance of support vector machine [25], Naı̈ve Bayes

[26], and decision tree algorithms. For lexical features, the

authors extracted word unigrams, bigrams, along with their

term frequency and inverse document frequency. To

extract structural features, part of speech tags and word

sense information were utilized. Moreover, they reduced

the dimensionality of corpora by eliminating low-fre-

quency terms. For the experimentation, CLE Urdu Digest

100K4 and CLE Urdu Digest 1 Million5 corpora were used.

Their experiments revealed that SVM [25] was better than

other classifiers irrespective of feature types.

State-of-the-art work on Urdu text document classifica-

tion is summarized in Table 1 by author name, benchmark

dataset, exploited feature representation and selection

techniques, classifiers, evaluation metrics, and their

respective performances.

After thoroughly examining the literature, it can be

summarized that SVM [25] and Naive Bayes [26] perform

better than other classifiers for the task of Urdu text doc-

ument classification.

For English text document classification, recent experi-

mentation on public benchmark datasets also proves that

performance of SVM [25] and Naive Bayes [26] signifi-

cantly improves with the use of filter-based feature selec-

tion algorithms [21, 47]. Filter-based feature selection

algorithms not only improve the performance of machine

learning-based methodologies, but it has also substantially

raised the performance of deep learning-based text docu-

ment classification approaches [46].

However, Urdu text document classification method-

ologies are lacking to produce promising performance due

to the lack of research in this direction as only Ahmed et al.

[16], and Zia et al. [18] utilized some feature selection

approaches in order to reduce the dimensionality of data.

While Ahmed et al [16] only experimented with TF-IDF-

based feature selection approach, Zia et al. [18] assessed

the integrity of just four feature selection algorithms (in-

formation gain (IG) [57], Chi-Square (CS), gain ratio (GR),

and symmetrical uncertainty) in domain of Urdu text

document classification. However, the performance impact

of more recent filter-based feature selection algorithms has

never been explored specifically for Urdu text document

classification.

In addition, despite the promising performance produced

by deep learning methodologies for diverse NLP tasks

[68, 69], no researcher has utilized any deep learning-based

methodology for the task of Urdu text document

classification.

4 Adopted methodologies for Urdu text
document classification

This section comprehensively illustrates machine learning,

deep learning, and hybrid methodologies which we have

used for the task of Urdu text document classification.

4.1 Traditional machine learning-based Urdu
text document classification with filter-
based feature selection algorithm

This section elaborates the machine learning-based Urdu

text document classification methodology. Primarily, our

main focus is to investigate the performance boost in tra-

ditional machine learning-based Urdu text document clas-

sification methodologies through the embedding of filter-

based feature selection algorithms. Figure 1 provides

graphical illustration of machine learning-based Urdu text

classification methodology which utilizes filter-based fea-

ture engineering. All phases of this methodology are dis-

cussed below.

4.2 Preprocessing

Preprocessing of text is considered as preliminary step in

almost all natural language processing tasks as better tok-

enization, and stemming or lemmatization eventually leads

to better performance in various machine learning tasks

such as text classification [70, 71], information retrieval

[72], and text summarization [73].

Stemming undoubtedly plays an important role to alle-

viate sparsity problems through dimensionality reduction;

however, there are very few rule-based stemmers available

for Urdu language which lack to showcase quality perfor-

mance. Ali et al. [14] claimed that stemming degrades the

performance of Urdu text document classification. We

analysed that the stemmer utilized by Ali et al [14] was of

poor quality which eventually caused the decline in per-

formance as it has been proved by many researchers that

stemming often improves the performance of text docu-

ment classification for various languages (e.g. English)

[74, 75]. Urdu language lacks better stemming algorithms;

therefore, instead of stemming, we perform lemmatization

through a manually prepared Urdu lexicon containing 9743

4 http://www.cle.org.pk/clestore/urdudigestcorpus100k.htm.
5 http://www.cle.org.pk/clestore/urdudigestcorpus1M.htm.
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possible values of 4162 base terms. In Sect. 6, Tables 3, 4,

5 reveal the impact of lemmatization on the size reduction

of three datasets used in our experimentation. We believe

public access to the developed lexicon will enable the

researchers to perform lemmatization in several different

Urdu processing tasks. In addition, all non significant

words of corpus are eliminated through a stop words list.

The list of 1000 stop words is formed by manually ana-

lyzing the most frequent 1500 words of underlay corpora.

4.3 Feature selection

Feature selection is being widely used to reduce the

dimensionality of feature space in different applications

like text classification [47], plagiarism detection [76], and

for query expansion in pseudo-relevance feedback-based

information retrieval [77], which eventually assists to

produce better results.

Table 1 State-of-the-art work on Urdu text document classification

Authors Datasets Feature

representation

techniques

Feature selection techniques Classifier Evaluation

metric

Ali et al.

[14]

Manually classified news

corpus

Normalized term

frequency

– NB , SVM Accuracy

Usman

et al.

[15]

News Corpus Term Frequency

(TF)

– NB, BNB, LSVM,

LSGB, RF

Precision,

Recall, F1-

score

Sattar

et al.

[17]

Urdu News Editorials Term Frequency

(TF)

– NB Precision,

Recall, F1-

score

Ahmed

et al.

[16]

Urdu News Headlines TF-IDF TF-IDF (Thresholding) SVM Accuracy

Zia et al.

[18]

EMILLE, Self Collected

Naive corpus (News)

TF-IDF Information Gain, Chi Square, Gain

Ratio, Symmetrical Uncertainty

KNN, DT, NB. F1-score

Adeeba

et al.

[19]

CLE Urdu Digest (1000K,
1 Million)

Term Frequency

(TF), TF-IDF

Pruning NB, SVM (linear,

radial, polynomial)

Precision,

Recall, F1-

score

Fig. 1 Machine learning-based Urdu text document classification methodology
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Feature selection approaches can be categorized into

three classes wrapper [78], embedded [79], and filter [80].

In wrapper methods, classifier is trained and tested over

several subsets of features and only one subset of features

is selected which has produced the minimum error [78].

Similarly, embedded feature selection approaches also

work like wrapper-based methods; however, wrapper-

based methods can exploit one classifier (e.g. SVM [25]) to

train over subset of features and other classifier (e.g. Naive

Bayes) to test optimal set of features, but embedded feature

selection approaches are bound to use the same classifier

throughout the classification process [79].

On the other hand, filter-based feature selection algo-

rithms do not take into account the error value of a clas-

sifier; however, they rank the features and pick top

k features based on certain threshold [81]. In this way, a

highly discriminative user specified subset of features is

acquired by utilizing the statistics of data samples.

Wrapper and embedded feature selection methods are

computationally far more expensive as compared to filter-

based feature selection algorithms. While both former

approaches assess the usefulness of features by cross-val-

idating classifier performance, latter approaches operates

over the intrinsic properties (e.g. relevance) of features

computed through univariate statistics.

In our work, considering the efficiency of filter-based

feature selection algorithm, we have adapted ten most

anticipated filter-based feature selection algorithms. These

algorithms are extensively being utilized for English text

document classification such as balanced accuracy measure

(ACC2) [55], normalized difference measure (NDM) [47],

max–min ratio (MMR) [21], relative discrimination crite-

rion (RDC) [56], information gain (IG) [57], Chi-squared

(CHISQ) [48], odds ratio (OR) [58], bi-normal separation

(BNS) [55], Gini index (GINI) [59], Poisson’s ratio (POI-

SON [60]).

Filter-based feature ranking algorithms utilize confusion

matrix (shown in Table 2) to compute the scores of corpus

features.

In confusion matrix, positive and negative classes are

two predefined classes in a typical binary text document

classification problem, whereas in a multi-class text doc-

ument classification problem, iteratively, one class is con-

sidered positive and rest are combined to form a negative

class. tj and �tj represent the presence and absence of terms,

respectively, in corresponding classes.

Here, we only refer these feature selection algorithms,

and interested readers can explore these algorithms deeply

by studying their respective papers.

4.3.1 Balanced accuracy measure (ACC2)

Accuracy measure (ACC) is the predecessor of the bal-

anced accuracy measure (ACC2) [47]. ACC is evaluated as

a difference between true positives and false positives of a

feature. It is the most simplest filter-based feature ranking

algorithm as it computes the difference between (tp) total

number of positive class documents having feature f and

(fp) total number of negative class documents having fea-

ture f. As in case of multi-class machine learning problem,

ACC is biased towards true positives; therefore, it performs

well only on balanced data.

AccuracyMeasure ¼ ACC ¼ tp � fp ð1Þ

To overcome the tp biasedness, ACC2 was proposed. It is

an absolute difference between true positive rate tpr
� �

and

false positive rate fpr
� �

.

Balanced AccuracyMeasure ¼ ACC2 ¼ jtpr � fprj ð2Þ

In Eq. 2, values of tpr and fpr are defined in Eqs. 3 and 4.

tpr ¼
tp

tp þ fn
ð3Þ

fpr ¼
tn

tn þ fp
ð4Þ

4.3.2 Normalized difference measure (NDM)

ACC2 treats all terms alike which have the same jtpr � fprj
value even if the tpr and fpr values of terms are different

from each other. According to Rehman et al. [47], the

terms located at the bottom right and top left corners of the

contour plot are more important than the ones located

around the diagonals. Although ACC2 assigns higher val-

ues to the terms located at bottom right and top left corners

of contour plot, it treats the terms alike which are located

around the diagonal. In order to overcome this problem,

normalized difference measure (NDM) treats the terms at

corners and at diagonals differently.

According to NDM, a term is important if:

• it has high jtpr � fprj value.
• Either tpr or fpr is closer to zero.

Table 2 Confusion matrix, where tp refers to the number of docu-

ments in positive class having term t (true positives), fp refers to the

number of documents in negative class having term t (false positives),
tn implies the number of documents in negative class not having term

t (true negatives), and fn implies the number of documents in positive

class not having term t (false negatives)

tj �tj

Positive class tp fn

Negative class fp tn
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• If any two terms have same jtpr � fprj values, then a

higher rank must be assigned to that term which has

smaller (tpr, fpr) value.

The mathematical representation of NDM is as follows:

NDM ¼ jtpr � fprj
minðtpr; fprÞ

ð5Þ

4.3.3 Max–Min ratio (MMR)

Max-min ratio is an improved version of ACC2 and NDM

as it addresses the downfalls of both feature ranking

algorithms. NDM assigns pretty high scores to all sparse

terms ðtpr � 0; fpr � 0 or tpr; fpr �0) and denominator

factor ðmin ðtpr; f prÞÞ obliterate numerator (jtpr � fprj) in

case of largely skewed data. However, MMR is highly

capable of estimating true term relevance especially for

those datasets in which predefined classes are highly skew

in nature. The mathematical representation of MMR is as

follows:

MMR ¼ maxðt pr; f prÞ � jtpr � fprj
minðtpr; fprÞ

ð6Þ

It is clear from the equation that the factor max(tpr, fpr)

stops the NDM scores from getting too large. It signifi-

cantly helps especially for those terms having tpr, fpr

approximately equal to 0. Likewise, MMR and NDM

assign same score when the max of tpr, and fpr are exactly

1. In case of having tpr exactly equal to fpr, MMR imitates

as ACC2. Although MMR faces the problem of deter-

mining denominator factor minðtpr; fprÞ for a particular set

of terms which do not exist in one of the predefined classes,

it is still considered to be an improved version because of

its capability to capture true relevance of corpus terms

especially for highly skew datasets.

4.3.4 Relative discrimination criterion (RDC)

Relative discrimination criterion (RDC) [56] computes

document frequencies of entire corpus terms counts and

calculates the difference between document frequencies of

each term count by taking into account the presence of

term in positives and negative classes. Moreover, in order

to tackle the problem of assigning exactly same score to

terms which have different discriminative powers, it

divides the computed difference by the minimum of two

document frequencies. Therefore, term having least mini-

mum document frequency in one of the predefined classes

would eventually get a higher score. This is because there

is a widely accepted criteria that a term which is frequent in

only one specific class shall get a higher score. In addition,

in order to assign higher weight to the differences having

smaller term counts, the difference is also divided by term

count, thus alleviating the bias for higher term counts.

Mathematical expression of RDC can be written as:

RDC ¼ jt prtc � f prtcj
minðt prtc; f prtcÞ � ðtcÞ

ð7Þ

4.3.5 Information gain (IG)

Information gain (IG) is widely used in text data. It is a

measure of how likely a term is to occur in a particular

class as compared to other classes. For instance, a word

’mesmerizing’ is more likely to occur in a positive review

and less likely to occur in a negative review. Because the

presence of word ‘mesmerizing’ is a strong indication of

positive emotion, therefore it can be classified as a highly

informative word.

Information gain (IG) also calculates whether the

information is increased or decreased after adding or

removing a term from feature subset. Information gain for

a term t can be calculated as:

IGt ¼ eðp; nÞ½Pweðtp; fpÞ þ P�
weðfn; tnÞ� ð8Þ

where p and n represent the number of positive and neg-

ative instances; further, e(p, n) can be calculated as:

eðp; nÞ ¼ � p

pþ n
log2

p

pþ n
� n

pþ n
log2

n

pþ n
ð9Þ

and pw, p
�
w can be calculated as:

Pw ¼ ðtpþ fpÞ
N

ð10Þ

P�
w ¼ 1� Pterm ð11Þ

4.3.6 Chi-squared (CHISQ)

It is another widely used feature selection algorithm. In

statistics, Chi-squared (CHI) is used to measure the

dependency of two events, whereas in text document

classification, it is used to check the dependency of a term

to a class [55]. High scores of CHISQ demonstrate the high

dependency between a term and a class.

Moreover, it is a two-sided metric because it takes only

positive value in consideration and ignores the sign [82].

On the basis of discriminating power of positive and neg-

ative classes, two-sided metric assigns positive values to

both classes. One of the downsides of this feature ranking

metric is that it performs poorly when the dataset contains

infrequent terms. It exaggerates such terms and pays no

attention to term distribution. However, performance of the

this algorithm can be improved by applying pruning with a
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certain threshold on the dataset. The score of CHISQ for ith

term of kth class is given as:

CHI ¼
tp � tn � fn � fp
� �2

tp þ fp
� �

fn þ tnð Þ tp þ fn
� �

fp þ tn
� � ð12Þ

4.3.7 Odds ratio (OR)

Odds ratio (OR) measures the odds of the presence of a

feature in a positive class normalized by that of negative

class. It is based on the idea that the distribution of feature

in positive documents is not the same as distribution in the

negative documents. It takes only those features into con-

sideration that repeatedly occur in a particular class and

totally ignores the features of same scope in the other

classes [58].

Also, OR does not prioritize any redundant and irrele-

vant features. It is good in handling a smaller number of

features. Its mathematical formulation is given as:

OR ¼ tp � tn
fp � fn

ð13Þ

4.3.8 Bi-normal separation (BNS)

Bi-normal separation (BNS) which is first introduced by

Forman [55] is defined as follows:

BNS ¼ jF�1
c ðtprÞ � F�1

c ðfprÞj ð14Þ

Here, F�1
c is inverse cumulative distribution function of

normal distribution. Highest weights are assigned to those

features that are strongly connected with positive class or

negative class. Lowest weights are assigned to those fea-

tures that are evenly distributed among all the classes. BNS

method is not biased towards document frequency and

helpful for extracting useful features in highly skewed

datasets.

4.3.9 Gini index (GINI)

Gini index (GINI) is used to measure the purity of an

attribute. The purity of a feature can be used to calculate its

importance. A feature is pure if all the documents show

that the feature belongs to the same class. Therefore, GINI

produces useful results when applied to features. Bigger

value of GINI depicts better purity of a feature.

The score of Gini index can be calculated for a feature t

using the following formula.

GIðtÞ ¼
XM

j¼1

PðtjCjÞ2PðCjjtÞ2 ð15Þ

4.3.10 Poisson ratio (POISON)

Initially, Poisson’s ratio (POISON) is only used to extract

query words in information retrieval. Later, Ogura et al

[83] modified POISON for feature selection. It measures

the deviation of a feature from the Poisson distribution. If

the feature is far away from the Poisson distribution, then it

is more effective. Conversely, if a feature lies near to or

within the range of distribution, then it is poor. Mathe-

matically, POISON is defined as follows:

POIS ¼ ðap � âpÞ2

âp
þ ðbnp � ^bnpÞ2

^bnp

þ ðcfp � ĉfpÞ2

ĉfp
þ ðdtn � d̂tnÞ2

d̂tn

ð16Þ

âp ¼ NðCÞð1� eð�kÞÞ; ^bnp ¼ NðCÞeð�kÞ; ð17Þ

ĉfp ¼ Nð �CÞð1� eð�kÞÞ ð18Þ

d̂tn ¼ Nð �CÞeð�kÞ ð19Þ

k ¼ F=N ð20Þ

where ap represents the presence and bnp refers to the

absence of a term in a particular class. If a term is present

but do not belong to class C, it is represented as cfp, and dtn
refers that both t and C are absent from the documents.

4.4 Feature representation

Diverse domains (e.g. textual, non-textual) have different

stacks of features; for example, if we want to classify iris

data, then the set of useful features would be sepal length,

sepal width, petal length and petal width [84]. However,

the set of textual features for certain domain is not fixed at

all. Representation of features plays a vital role to raise the

performance of diverse classification methodologies

[29, 68, 69]. Machine learning methodologies utilize bag of

words-based feature representation approaches. Term fre-

quency [85] is the simplest and widely used feature rep-

resentation technique for various natural language

processing tasks such as text classification and information

retrieval [86–88]. Term frequency (TF) [85] of a term in a

document is defined as the number of times a term occur in

that document. One of the most significant problems of TF

is that it does not capture the actual importance and use-

fulness of a term. This downfall is well addressed by term

frequency-inverse document frequency (TF-IDF) [85]

which is a modified version of term frequency [85] as it

declines the weight specifically for the words which are

commonly used and raises the weight for less commonly

used words of underlay corpus. It gives more importance to

less frequent terms and vice versa. It is calculated by taking
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dot product of term frequency (TF) and inverse document

frequency (IDF).

IDF assigns weights to all the terms on corpus level.

According to IDF, a term is more important if it occurs in

less documents. When IDF weighting scheme is used

standalone, it can allocate same weights to many terms

which have the same DFt score. IDF is defined as follows:

IDFt ¼ log
N

DFt
þ 1 ð21Þ

where N is the total number of documents in the corpus and

DFt is the document frequency of term t.

A higher TF-IDF score implies that the term is rare and

vice versa. Its value for term t in a document d can be

calculated as

TF � IDFt;d ¼ TFt;d � IDFt ð22Þ

Thus, by using both TF and IDF, TF-IDF captures the

actual importance of terms on both document and corpus

level.

4.5 Classifiers

In order to assess the impact of filter-based feature selec-

tion algorithms on the performance of trivial machine

learning-based Urdu text document classification method-

ologies, we utilize support vector machine (SVM) [25], and

Naive Bayes (NB) [26] classifiers. This is because, in state-

of-the-art Urdu text document classification work, we have

found that only these two classifiers mark promising per-

formance [14–19].

Naive Bayes [26] uses Bayes’ theorem and probability

theory in order to make predictions. Naive Bayes [26]

classifiers are usually categorized as generative classifiers

and are highly useful for applications like document clas-

sification [89], and email spam detection [90], whereas

SVM [91] classifier is categorized as discriminative clas-

sifier and mostly used for anomaly detection [92], and

classification problems [93]. It is a non-probabilistic linear

classifier which plots each data sample as a coordinate

point in multi-dimensional space and finds an optimal

hyperplane which eventually helps to differentiate the class

boundaries effectively.

5 Deep learning methodologies

To better understand multifarious deep learning method-

ologies adapted for Urdu text document classification,

learning of convolutional neural network(CNN), recurrent

neural network(RNN), long short-term memory net-

work(LSTM), and gated recurrent unit (GRU) is illustrated.

Also, their differences are explained through mathematical

expressions in following subsections.

5.1 Input layer

In our work, we have either utilized randomly initialized or

300 dimensional pre-trained neural word embeddings to

create numeric representation of corpus words. In other

words, given a document of n words w1;w2;w3; . . .;wn, for

each corpus word wi, embedding vector ei is generated by

computing matrix vector product using embedding matrix

W�R d � jV j where |V| represents size of vocabulary and d

associates to the dimension of real valued word embedding

vector.

ei ¼ Wvi ð23Þ

In this way, each corpus document is represented in terms

of several word vectors containing real values in between 0

and 1 e ¼ e1; e2; e3; . . .; en. These features are then fed to

variety of feature extraction layers.

5.2 Convolutional neural network (CNN)

Typically, convolutional neural network (CNN) is com-

posed of convolution and pooling layers proceeded by

one/multiple fully connected layers which at times is

replaced by global average pooling layer. Moreover,

researchers have also experimented with dropout and batch

normalization approaches to improve the performance of

CNN [94]. Depth and components of CNN play a pivotal

role in enhancing the task performance. Various compo-

nents with their respective roles within CNN are briefly

discussed below.

5.2.1 Convolution layer

Convolutional layer has collection of kernels that act as

feature extractors. In case of symmetrical kernel, convo-

lution operation certainly turns into a correlation operation

[95]. Each kernel w 2 Rkk is applied upon a window con-

taining h words with certain stride size in order to generate

fresh feature. For instance, a fresh feature ci is produced

from the window of words xi:iþh�1

ci ¼ f ðw:xi:iþh�1 þ bÞ ð24Þ

In Eq. 24, b 2 R represents bias and f acts as a nonlinear

function like hyperbolic tangent. This kernel is executed

over every possible window of words present in a sentence

w1:h;w2:hþ1 � � �wn�hþ1:n to generate a feature map that can

be represented as:

c ¼ ½c1; c2; c3. . .cn�hþ1� ð25Þ
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where c 2 Rn�hþ1. Model actually makes use of multiple

kernels with diverse window and stride size to get collec-

tion of features. Convolution operation can be classified

into distinct different types considering the size and type of

filters, padding type, and convolution direction [94].

5.2.2 Pooling layer

After extracting features from documents, capturing their

relative positions become an important task which is

achieved by down-sampling or pooling. Pooling is a local

operation that captures the dominant response of local

region by aggregating similar neighbourhood information

[96]. Pooling operation can be expressed as:

Zk
l ¼ gpðFk

l Þ ð26Þ

Here, Zk
l refers to down-sampled feature map of lth layer

for kth give feature map ðFk
l Þ, gp represents the kind of

pooling operation. Pooling mainly assists to acquire feature

combinations that are invariant to small distortions and

translational shifts [97, 98]. Minimization of feature map

alleviates the complexity of neural network and also assists

in raise the generalization through reducing over-fitting.

Variety of pooling operations are applied like average, min,

max overlapping, L2, spatial pyramid, etc. [94, 99].

5.2.3 Activation function

It is a decision function and helps the network for learning

complex patterns. Appropriate selection of activation

function enhances the process of learning. For a feature

map acquired through convolution operation, activation

function can be written as:

Tk
l ¼ gaðFk

l Þ ð27Þ

Here, ðFk
l Þ is produced by convolution, that is given to

activation function represented as ga. Activation function

embeds nonlinearity and yields output Tk
l for lth layer.

Critical analysis of literature shows that multifarious

activation functions have been used like tanh, sigmoid,

maxout, SWISH, ReLU, and its variants (LeakyReLu,

PReLU, ELU) [99–103]. But, ReLU and variants of ReLU

are mostly preferred by the researchers as they greatly

assist in dealing with gradient vanishing issue [104, 105].

5.2.4 Batch normalization

In order to resolve the issues related to covariance shift

inside feature maps, batch normalization is widely used.

Covariance shift refers to the change in distribution of

network hidden units/values that significantly decreases

convergence rate (by pushing learning rate to lower value)

and demands watchful initialization of model parameters.

For transformed feature map, batch normalization is given

as follows:

Nk
l ¼ Fk

l � ub=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b þ �

q
ð28Þ

Here, 28, for mini batch, Nk
l and Fk

l refer to normalized and

input feature map, r2b and ub correspond to variance and

mean of a given feature map. To avoid zero division, � is

injected to add numerical stability.

Batch normalization standardizes distribution of values

of feature map through setting them into unit variance and

zero mean [106]. Also, it greatly flatten gradient flow and

serve as a regularizing factor, through which network

generalization is improved up to great extent.

5.2.5 Dropout

Dropout layer serves as a regularizer in neural network that

eventually alleviates overfitting and improves generaliza-

tion through randomly neglecting few connections or units

with particular probability [107]. In neural networks, as

several connections based on nonlinear relation are co-

adapted at times, random dropping of few units creates

multiple thinned deep architectures and afterward one

optimal representative network architectures is opted with

quite small weights. Then, this opted architecture is con-

sidered an approximation of all proposed networks [108].

5.2.6 Fully connected layer

The layer which is used at the end of neural network is

called fully connected layer. Unlike convolution and

pooling, it can be classified as a global extraction. It takes

the input from all feature extraction phases and analyses

the result of former layers [109]. As a result, it creates a

nonlinear association of selected features that are used for

text classification [110].

5.3 Recurrent neural network (RNN) and its
variants (LSTM, GRU)

Researchers have extensively utilized recurrent neural

network (RNN) for text classification [111, 112]. As RNN

allocates more weights to former points and takes into

account information of former nodes, it analyses the

structure of dataset in a more effective manner. Mostly,

RNN makes use of long short-term memory (LSTM) or

gated recurrent unit (GRU) that consists of embedding

layer, hidden layers, and output layer. This methodology

can be expressed as:
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xt ¼ f ðxt�1; ut; hÞ ð29Þ

At time step t, here xt represents state and ut refers to the

input. Using weights, it can be expressed as:

xt ¼ Wrecrðxt�1 þWinut þ bÞ ð30Þ

Here, Wrec represents recurrent weight matrix win is input

weights, b refers to bias and r implies the element-wise

operation.

RNN is highly vulnerable to exploding and vanishing

gradient problems [113] when error of neural network is

back propagated in the network. Due to these reasons, its

variants LSTM and GRU are used mostly in experimen-

tation, details of which are given below.

5.3.1 Long short-term memory (LSTM)

Long short-term memory (LSTM), a special type of RNN

given by Hochreiter et al. [114], addressed the downfalls of

RNN such as vanishing gradient issue through preserving

long-range dependencies in a very effective manner [114].

Although due to having chain-like architecture, it is quite

similar to RNN, LSTM makes use of several gates in order

to efficiently regulate information which is allowed for the

state of each node.

il ¼ rðWi½xt; ht�1� þ biÞ ð31Þ

Ct ¼ tanhðWc½xt; ht�1� þ bcÞ ð32Þ

ft ¼ rðWf ½xt; ht�1� þ bf Þ ð33Þ

Ct ¼ it � CftCt�1

t ð34Þ

ot ¼ rðWo½xt; ht � 1� þ boÞ ð35Þ

ht ¼ otðtanhðCtÞÞ ð36Þ

Here, Eq. 31 refers to input gate, Eq. 32 refers to the value

of candid memory cell, Eq. 33 represents forget gate acti-

vation, Eq. 34 computes value of fresh memory cell, and

Eqs. 35, 36 describe the final yield of gate value. More-

over, b refers to bias, w represents the weight matrix, xt
represents the input at timestamp t, and indies i, c, f, o refer

to input, memory of cell, forget, and final output gates in

turn.

5.3.2 Gated recurrent unit (GRU)

Gated recurrent unit (GRU) is a more simplified version of

LSTM architecture [115]. But unlike LSTM, it has two

gates and does not have internal memory. In addition, it

does not apply second nonlinearity [116].

zt ¼ rgðWz � xt þ Uz � ht�1 þ bzÞ ð37Þ

Here, zt is the update gate representation of t, xt is input

vector, and W, b, U are parameter vectors. Activation

function is either ReLu or sigmoid that can be formulated

as:

rt ¼ rgðWr � xt þ Ur � ht�1 þ brÞ ð38Þ

where zt is the update gate representation of t and rt is reset

gate representation of t.

ht ¼ zt � ht�1 þ ð1� ztÞ � rhðWh � xt þ Uh � ðrt � ht � 1Þ þ bhÞ
ð39Þ

For t, ht is the final output vector where rh represents

hyperbolic tangent operation.

5.4 Selection and optimization of model
parameters

To achieve optimal performance in multifarious natural

language processing (NLP), tasks like classification,

selection, and tuning of hyperparameters are quite crucial

in deep learning approaches. Inappropriate selection or

tuning does not only badly hit the generalization of neural

networks which eventually leads to significant decline in

performance, but it may also cause endless training and

ineffective consumption of valuable resources. Due to

humongous number of hyperparameters, selecting most

crucial ones based on time and resource complexity and

performance impact is not a straightforward task at all. In

addition, optimization of hyperparameters is considered as

black box research of x, in a way that for a defined function

f : S � Rd ) R, f(x) values is quite small and function f is

stochastic by nature. This infers the scenario where one is

searching for best setting of hyperparameters for certain

model by trying multiple values of such parameters and

opting the value that yields best performance on validation

data.

Existing hyperparameter search approaches can be

classified into pattern search [117], Gaussian processes

[118, 119], evolution strategies [120], random sampling

[121], and grid sampling [121]. Building on the critical

findings related to most crucial hyperparameters acquired

by Yin et al. [122] after performing a thorough compara-

tive analysis of deep neural networks for diverse NLP

tasks, in our work, we have also only selected most influ-

ential hyperparameters. More specifically, we tweak hid-

den size, batch size, optimizer, learning rate, momentum,

loss criterion, activation function, dropout, number of

kernels, and their sizes. To find optimal values of selected

parameters, instead of functional or manual evaluation that

proves extremely expensive, we have employed most

widely used hyperparameter optimization approach,

namely grid search. In grid search, a set of hyperparameter

5448 Neural Computing and Applications (2021) 33:5437–5469

123



are opted beforehand (random manner or on the grid) and

model training is performed in parallel. Grid search is

highly scalable and quite easy to execute. In our experi-

mentation, we have tried different batch sizes [10, 20, 30,

40, 50, 60, 70, 80, 90, 100], optimizers [SGD’, RMSprop,

Adadelta, Adagrad, Adam, Nadam, Adamax], learning rate

[0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5], momentum [0.0, 0.2,

0.4, 0.6, 0.8, 0.9] dropout rate [0.0, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9] hidden units [1, 5, 10, 15, 20, 25, 30],

number of kernels [23–28], kernel sizes [25, 50, 75, 100,

125, 150, 200], epochs [10, 20,30, 40, 50], and loss crite-

rion [categorical cross entropy, binary cross entropy]. For

pre-trained language model BERT-based transfer learning,

we find multilingual cased model containing 12 heads, 12

layers, 110 parameters, and 768 hidden units and pre-

trained over corpora of 104 languages to be the most

optimal among all available BERT variants. In terms of

parameters, we experiment with sequence length ranging

from 24–29, batch size 23–29, learning rate [1e-1, 1e-2, 1e-

3, 1e-4 or 1e-5, 2e-1, 2e-2, 2e-3, 2e-4 or 2e-5], buffer size

[100, 200, 300, 400, 500], and epochs [10, 20, 30, 40, 50].

On the other hand, for machine learning-based Urdu text

classification , we have wrapped support vector machine

(SVM) into one against rest classification paradigm with

linear and rbf kernels and balanced class weights. In order

to find optimize gamma and cost values, we utilize grid

search to compute the accuracy of every parameter com-

bination (log2g range(3,- 15), step=- 2, whereas log2c

range(- 5, 15), step=2[[ log). Contrarily, Naive Bayes is

used with default parameters.

In our work, SVM marks better performance with linear

kernel, whereas all deep learning models mark optimal

performance with root mean square propagation (RMSprop)

optimizer, learning rate of 0.001, categorical cross-entropy

loss criterion, and batch size of 50 when executed for 20

epochs. Using BERT, we achieve optimal performance with

buffer size of 400, sequence length of 512, batch size of 16,

and learning rate of 1e-5 by training the model up to 50

epochs. Experimentation with a variety of deep learning

model indicates that changes in batch size, hidden size

significantly influence model performance. To sum up, for

diverse deep learning models, we consider batch size and

hidden size are really crucial parameters, tweaking of which

leads to optimal or sub-optimal performance.

5.5 Adopted deep learning methodologies
for Urdu text document classification

This section summarizes state-of-the-art deep learning-

based methodologies adapted for the task of Urdu text

document classification. In order to provide a bird’s eye

view on adopted deep learning methodologies, generalized

architecture is drawn in Fig. 2.

We adapt a multi-channel CNN model presented by

Yoon Kim [123] for the task of sentiment, question, and

sentence classification. In order to reap the benefits of

distinct pre-trained word vectors, for the very first time,

they made few channels dynamic, and others static

throughout training in order to prevent overfitting. Several

researchers (e.g. Nabeel et al. [46]) utilized this model for

English text document classification and achieved state-of-

the-art performance. In our experimentation, we have fed

FastText neural word embeddings at one channel and pre-

trained neural word embeddings provided by Haider et al.

[36] at the second channel. At third channel, we have used

randomly initialized word embeddings. In order to avoid

overfitting, we keep the FastText embeddings static, and

fine-tuned other embeddings during training.

Embedding layer of this model is followed by 3 con-

volution layers with 128 filters of size 3, 4, and 5,

respectively. After that, extracted features of all convolu-

tion layers are concatenated and fed to another convolution

layer having 128 filters of size 5. After applying max-

pooling of size 100, the extracted features are then passed

to a flatten layer which flattens the features. These flattened

features are then passed to a dense layer with 128 output

units which are followed by a dropout layer of rate 0.5.

Finally, a last dense layer acts as a classifier.

Another CNN-based approach adapted for Urdu text

document classification was presented by Nal Kalchbren-

ner et al. [124]. A distinct aspect of this model was the use

of wide convolutions. The authors claimed that the words

at edges of a document do not actively participate in

convolution and get neglected especially when the filter

Fig. 2 Generalized

methodology of adopted deep

learning models
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size is large. An important term can occur anywhere in the

document so by using wide convolution every term take

equal part while convolving. Although, originally, authors

did not use any pre-trained word embeddings in the pro-

posed CNN architecture, we have utilized pre-trained word

embeddings.

This model begins with an embedding layer, followed

by convolution layer with 64 filters of size 50. Top five

features are extracted from the convolution layer by using a

K-max-pooling layer of value 5. Zero padding is utilized to

maintain the wide convolution structure. After that, there is

another convolution layer with 64 filters of size 25. This

layer is followed by a K-max-pooling layer of value 5.

Finally, the extracted features are flattened and passed to a

dense layer which classifies the documents.

Yin et al. [125] proposed a CNN model for the task of

binary or multi-class sentiment analysis, and subjectivity-

based question classification for the English language. The

significance of the multi-channel input layer was deeply

explored by the author by using five different pre-trained

word vectors. This model has outperformed eighteen

baseline machine and deep learning methodologies [125]

for sentiment and question classification tasks. While

adopting this model, we have utilized two embedding

layers, two convolution layers along with wide

convolutions.

The model starts with two embedding layers, and each

embedding layer is followed by two wide convolution

layers with 128 filters of size 3 and 5, respectively. Each

convolution layer is followed by a K-max-pooling layer of

size 30. After that, both convolution layers are followed by

two other convolution layers of the same architecture

except the value of k which is 4 in K-max-pooling layers.

All the features from all convolution layers are then con-

catenated and flattened by using a flatten layer. These

flattened features are then passed to two dense layers from

which the first dense layer has 128 output units and the last

dense layer acts as a classifier.

Just like Yin et al. [125] CNN-based approach, Zhang

et al. [126] also proposed a CNN-based approach for text

classification. In proposed approach, they not only exper-

imented with three different pre-trained neural word

embeddings but also applied l2 norm regularization before

and after concatenating all features of different channels.

While adopting this model in our experimentation, three

embedding layers, l2 norm regularization after features

concatenation, and wide convolutions are utilized.

The model starts with three embedding layers, and each

embedding layer is then followed by two convolution

layers. Both convolution layers have 16 filters of size 3 and

5, respectively, which are followed by a global max-

pooling layer. After that, features of all layers are con-

catenated and l2 norm regularization is applied using a

dense layer with 128 output units. These features are then

passed to a dense layer which acts as a classifier.

Dani Yogatama et al. [127] proposed an LSTM-based

neural network model for classifying news articles, ques-

tions, and sentiments. Two different versions of the model,

namely generative and discriminative LSTM model, were

proposed. Both models were the same except that the

discriminative model tried to maximize the conditional

probability, while the generative model maximized the

joint probability. We adopt discriminative version of the

model. This model begins with an embedding layer, and

output of the previous layer is fed to an LSTM layer which

has 32 units. The features extracted by LSTM are then

flattened and passed to a dense layer for classification.

Another LSTM-based model was proposed by Hamid

Palangi et al. [128] to generate the sentence neural

embeddings for raising the performance of document

retrieval task. This model was not used for any sort of text

classification but as its architecture is pretty similar to

Yogatama et al. [127] proposed model that is why we have

adopted this model for our experimentation. The output of

the first embedding layer is fed to an LSTM layer which

has 64 output units. The output of the LSTM layer is then

flattened and feed into a dense layer that acts as a classifier.

As discussed before, both CNN and RNN have their

own benefits and drawbacks [122]. In order to reap the

benefits of both architectures CNN, and RNN, researchers

proposed hybrid models [122, 129–132] in which usually a

CNN architecture is followed by RNN. CNN extracts

global features [129, 133, 134], while RNN learns long-

term dependencies for the extracted features

[116, 135–141].

A hybrid model was presented by Siwei Lai et al. [142]

for the task of text classification. The author claimed that

RNN was a biased model in which later words were more

dominant than earlier words. To tackle this problem, a

hybrid model was suggested that consists of bidirectional

LSTM, followed by a max-pooling layer. The bidirectional

nature of the model reduces the words dominance, whereas

max-pooling layer captures more discriminative features.

This model has outperformed twelve machine and deep

learning-based models for the task of text classification.

The model begins with three embedding layers, first one

is passed to forward LSTM layer, and the second one is fed

to backward LSTM layer. Both LSTM layers have 100

output units. The yielded features from both LSTMs are

concatenated along with third embedding layer and pass to

a dense layer which has 200 output units. Dense layer is

followed by a max-pooling layer, and the output of max-

pooling layer is then passed to another dense layer which

acts as a classifier.

Guibin Chen et al. [143] proposed another hybrid model

that consists of CNN and LSTM and used for multi-label

5450 Neural Computing and Applications (2021) 33:5437–5469

123



text classification. Pre-trained word embeddings were used

to feed the CNN, and then, features were extracted to feed

LSTM. The author claimed that the pre-trained word vec-

tors contain the local features of each word, whereas CNN

captured the global features of the input document. Both

local and global features were then used by LSTM to

predict the sequence of labels. We have adopted this model

for multi-class classification instead of multi-label

classification.

The model starts with an embedding layer which is

followed by five convolution layers with 128 filters of sizes

10, 20, 30, 40, and 50, respectively. Each convolution layer

is followed by a max-pooling layer of the same filter size.

The output features from all five max-pooling layers are

concatenated and flattened using a flatten layer. These

flattened features are then passed to a dense layer which

has 128 output units. The output from the dense layer along

with the output of the embedding layer is then passed to an

LSTM layer. This LSTM layer is followed by another

dense layer that acts as a classifier.

Another hybrid model based on CNN and LSTM was

proposed by Chunting Zhou et al. [144] for sentiment

analysis and question classification. CNN was used to

capture the high-level word features, whereas LSTM

extracted the long-term dependencies. Different types of

max-pooling layers were applied to the features extracted

from CNN. However, the authors suggested that max-

pooling layer must be avoided if the features needed to be

passed to LSTM. Because LSTM was used for sequential

input and a max-pooling layer would break the sequential

architecture.

The output of the first embedding layer is passed to five

convolution layers which have 64 filters of size 10, 20, 30,

40, and 50, respectively. The extracted features of these

five convolution layers are then concatenated and fed to an

LSTM layer which has 64 output units. This layer is fol-

lowed by two dense layers from which the first dense layer

has 128 units and the last dense layer eventually acts as a

classifier.

The last chosen model in our research is also a hybrid

model presented by Xingyou Wang et al. [145] for senti-

ment classification. The theory behind this model is the

same as Chunting Zhou et al. [144] model except it used

both LSTM and GRU along with max-pooling layers after

CNN. Based on experimental results, authors claimed that

both LSTM and GRU produced the same results, that is

why we have adopted this model only with LSTM for our

experimentation.

This model begins with an embedding layer, followed

by three convolution layers which have 64 filters of size 3,

4 and 5, respectively. Each convolution layer is followed

by a max polling layer of same filter sizes. After that, all

the output features of the max-pooling layers are

concatenated and passed to an LSTM layer which has 64

units. The features yielded by LSTM layer is then passed to

a dense layer which has 128 units. This layer is followed by

another dense layer that finally acts as a classifier.

5.6 Transfer learning using BERT

This section discusses the fruitfulness of transfer learning

using pre-trained language model ‘‘BERT [42]’’ for the

task of Urdu text document classification. Pre-training

language model has proven extremely useful to learn

generic language representations. In previous section, all

discussed deep learning-based classification methodologies

utilized pre-trained neural word embeddings including

Word2vec [146], FastText [147], and Glove [148]

Traditional neural word embeddings are classified as

static contextualized embeddings. These embeddings are

prepared by training a model on a gigantic corpus in an

unsupervised manner to acquire the syntactic and semantic

properties of the words up to certain extent. However, these

embeddings fail to grasp polysemy which is all about

generating distinct embeddings for the same word on

account of different contexts [37, 37–39]. For instance,

consider two sentences like ‘‘Saim, I ’ll get late as I have to

deposit some cash in Bank’’ and the other one is ‘‘My

house is located in canal Bank’’. In both sentences, word

bank has a different meaning. However, models build on

top of neural word embeddings do not consider the context

of words in which they appear; thus, in both sentences, the

word ‘‘Bank’’ will get a same vector representation which

is not correct.

These downfalls are resolved by pre-trained language

models which learn the vector representation of words

based on the context in which they appear, and this is why

embeddings of pre-trained language models such as Bidi-

rectional Encoder Representations from Transformers

(BERT [42]) are categorized as dynamic contextualized

embeddings. Dynamic contextualized embeddings capture

word semantics in dissimilar contexts to tackle the problem

of polysemous, and context-dependent essence of words. In

this way, language models such as BERT [42] manage to

create different embeddings for the same word which

appear in multiple contexts. Traditional language models

are trained from left to right; thus, they are framed to

predict next word. Contrarily, there exist few approaches

such as Universal Language Model Fine-Tuning (UMLFit)

[41] and Embeddings for Language Models (ELMo) [40]

based on Bi-LSTM. Bi-LSTM is trained from left to right

in order to predict next word, and from right to left to

predict previous word, however not both at the same time,

whereas BERT [42] utilizes entire sentence to learn from

all words located at different positions. It randomly masks

the words in certain context before making prediction. In
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addition, it uses transformers which further make it

accurate.

To summarize, due to masked language modelling,

BERT [42] supersedes the performance of other language

modelling approaches such as UMLFiT [41], and ELMO

[40]. Moreover, training the transformed architecture

bidirectionally in language modelling has proved extre-

mely effective as it has deeper understanding of language

context than unidirectional language models. Although

BERT [42] has marked promising results in several natural

language processing (NLP) tasks, there exists a limited

research to optimize BERT [42] for the improvement of

target NLP tasks. In this paper, we thoroughly investigate

how to make the best use of BERT [42] for the task of text

document classification. We explore multifarious methods

to fine-tune BERT [42] in order to maximize its perfor-

mance for Urdu text document classification. We perform

pre-processing in a same manner as discussed in detail in

Sect. 4.2.

5.7 Hybrid methodology for Urdu text document
classification

This section explains the hybrid methodology for the task

of Urdu text document classification. It is considered that

deep learning-based methodologies automate the process

of feature engineering; however, recent research in com-

puter vision [149] and natural language processing (NLP)

[46] extrapolates that these methodologies also extract

some irrelevant and redundant features too which eventu-

ally derail the performance of underlay methodologies. In

NLP, to remove irrelevant and redundant features, we [46]

proposed a hybrid methodology which harvested the ben-

efits of both trivial machine learning-based feature engi-

neering, and deep learning-based automated feature

engineering. In proposed hybrid methodology, first, a

vocabulary of discriminative features was developed by

utilizing a filter-based feature selection algorithm, namely

normalized difference measure (NDM) [47], and then, the

constructed vocabulary was fed to the embedding layer of

CNN. Hybrid methodology managed to produce the

promising figures on two benchmark English datasets

20-Newsgroup6, and BBC7, when compared against the

performance figures of traditional machine, and deep

learning methodology. To evaluate that the proposed

hybrid approach is extremely versatile and its effectiveness

is neither biased towards the size of training data nor

towards specific language or deep learning model, we

assess the integrity of hybrid methodology by performing

experimentation on different datasets and language with a

variety of deep learning models. We adopt 4 CNN, 2 RNN,

and 4 hybrid models (CNN?RNN) which were previously

used for text document or sentence classification (discussed

in Sect. 5.5). Hybrid approach is evaluated on three Urdu

datasets (CLE Urdu Digest 1000k, CLE Urdu Digest 1M,

DSL Urdu News) (Fig. 3).

We perform pre-processing in the same manner as dis-

cussed in detail in Sect. 4.2.

6 Datasets

To evaluate the integrity of all variety of methodologies

based on machine learning, deep learning, hybrid approach,

and language modelling, we use two state-of-the-art closed

source corpora CLE Urdu Digest 1000k, CLE Urdu Digest

1M, and one publicly available presented corpus namely

DSL Urdu news. All textual documents of DSL Urdu news

dataset are crawled from following web sites Daily Jang8,

Urdu Point9, HmariWeb10, BBC Urdu11, and parsed
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Fig. 3 Machine and deep learning-based hybrid methodology [46]

6 http://archive.ics.uci.edu/ml/datasets/twenty?newsgroups.
7 http://mlg.ucd.ie/datasets/bbc.html.
8 https://jang.com.pk/.
9 https://www.urdupoint.com/.
10 http://hamariweb.com/.
11 https://www.bbc.com/urdu.
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through Beautiful Soup12. Table 3 illustrates the charac-

teristics of newly developed corpus having 300K words,

4224 sentences, and a total 662 documents which belong to

following six categories health-science, sports, business,

agriculture, world, and entertainment. Average length of a

document is approximately 193 words in the developed

corpus.

State-of-the-art corpora CLE Urdu Digest 1000K con-

tains 270 news documents, and CLE Urdu Digest 1M con-

tains 787 news documents belonging to 8 classes. Former

one is a precise corpus and average length of a document is

nearly 140 words; however, latter one is a large corpus with

an average document length of 900 words. Statistics of

both corpora with respect to each class are reported in

Tables 4 and 5, respectively.

In order to apply machine learning-based text document

classification methodologies, for underlay corpus, textual

documents of each class need to be asymmetric when

compared with the documents of other classes. Here, in our

work, to perform distribution analysis of experimental

datasets with respect to unique classes, we have employed

most widely used Kullback–Leibler (KL) divergence

approach [150] following the work of Stehlik et al. [151]. It

assists to deduce whether samples of distinct classes of one

or more datasets are symmetrical or asymmetrical by nat-

ure. We receive multifarious divergences which empiri-

cally reveal that samples belonging to different classes for

each dataset are asymmetrical. This asymmetry fully sup-

ports the fact that all experimental datasets are not biased

towards samples of one particular class.

Table 3 DSL Urdu news dataset statistics

Class No. of documents No. of sentences No. of tokens No. of tokens after lemmatization

Agriculture 102 669 17,967 9856

Business 120 672 20,349 9967

Entertainment 101 685 19,671 10,915

World 111 631 18,589 12,812

Health-sciences 108 823 27,409 12,190

Sports 120 744 24,212 9992

Table 4 CLE Urdu Digest

1000k dataset statistics before

and after Lemmatization

Class No. of documents No. of sentences No. of tokens No. of tokens after lemmatization

Culture 28 488 8767 8767

Health 29 608 9895 9895

Letter 35 777 11,794 11,794

Interviews 36 597 12,129 12,129

Press 29 466 10,007 10,007

Religion 29 620 9839 9839

Science 55 468 8700 8700

Sports 29 588 10,030 10,030

Table 5 CLE Urdu Digest 1M

dataset statistics before and after

lemmatization

Class No. of documents No. of sentences No. of tokens No. of tokens after lemmatization

Culture 133 8784 145,228 145,228

Health 153 11,542 169,549 169,549

Letter 105 8565 115,177 115,177

Interviews 38 2481 41,058 41,058

Press 118 6106 125,896 125,896

Religion 100 6416 107,071 107,071

Science 109 6966 117,344 117,344

Sports 31 2051 33,143 33,143

12 https://pypi.org/project/beautifulsoup4/.
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7 Experimental setup and results

This section summarizes different APIs that are used to

perform Urdu text document classification. It also discusses

the results produced by methodologies based on machine

learning, deep learning, and hybrid approach on three

datasets (DSL Urdu news, CLE Urdu Digest 1000k, CLE

Urdu Digest 1M) used in our experimentation. In order to

process Urdu text for the task of Urdu text document

classification, we develop a rule base sentence splitter and

tokenizer. To evaluate the integrity of machine learning-

based Urdu text document classification methodology, all

three datasets are split into train and test sets containing

70%, and 30% documents from each class, respectively.

The parameters of Naive Bayes [26] classifier are

alpha=1.0, fit_prior=True, class_prior=None, and SVM

[25] classifier is used with linear kernel and balanced class

weight.

On the other hand, in order to evaluate the performance

of adopted deep learning methodologies and to perform a

fair comparison with machine learning-based approaches

for all three datasets, we use 30% data for test set and

remaining 70% data is further split into train and validation

sets having 60% and 10% data, respectively. We use Keras

API to implement the methodologies of ten adopted neural

network-based models. Pre-trained Urdu word embeddings

provided by Haider et. al [36], and FastText13 are used to

feed all embedding layers except the second layer in Yin

et al. [125] model and both second and third layers in

Zhang et al. [126] model which are randomly initialized.

To evaluate and compare the performance of filter-based

feature selection algorithms, first we rank the features of

training corpus against all classes. Then, at different pre-

defined test points, we take top k features from all classes

and feed these features to two different classifiers SVM

[25], and Naive Bayes [26]. For adopted deep learning-

based Urdu text document classification methodologies, we

perform experimentation in two different ways. In first

case, after pre-processing, we select entire set of unique

terms of each corpus and fed to the embedding layer of all

adopted models (discuss with detail in Sect. 5.5), whereas

in second case, we select 1000 most frequent terms for

DSL Urdu News, and CLE Urdu Digest 1000k datasets,

and 10, 000 most frequent terms for CLE Urdu Digest

1M dataset.

Likewise, to evaluate the performance of hybrid

approach which reaps the benefits of both machine and

deep learning-based feature engineering, as similar to

machine learning-based classification, for each dataset, we

first rank the features of training corpus using NDM [47]

feature selection algorithm. Then, top k features of each

class are fed to 10 different deep learning models. Rather

than performing extensive experimentation with all feature

selection algorithms once again, considering the promising

performance produced by NDM [47] with all machine

learning-based methodologies, we only explore the impact

of NDM [47] feature selection algorithm for 10 different

deep learning-based classification methodologies.

To assess the effectiveness of transfer learning using

BERT [42], we fine-tune multilingual cased language

model (BERT-Base [42]) having 12-layers, 12, heads, 768

hidden units, 110M parameters and pre-trained on 104

languages. We utilize multilingual cased model as it

resolves normalization problems in several languages. We

fine-tune multilingual model with the buffer size of 400,

sequence length of 512, batch size of 16, and learning rate

of 1e-5 for 50 epochs.

As two close source experimental datasets (CLE Urdu

Digest 1000k, 1M) are highly unbalanced, thus instead of

using accuracy, or an other evaluation measure, we have

performed evaluation using F1 measure as it is widely

considered more appropriate evaluation measure for

unbalanced datasets.

7.1 Results of traditional machine learning-
based text document classification
methodology

This section summarizes and compares the performance of

ten feature selection algorithms (RDC [56], MMR [21],

NDM [47], POISON [60], GINIINDEX [59], ACC2 [55],

ODDS [58], IG [57], CHISQ [48], BNS [55]) on two closed

source corpora (CLE Urdu Digest 1000k, CLE Urdu Digest

1M Benchmark dataset) and one newly developed corpus

(DSL Urdu News) using Naive Bayes [26], and SVM [25]

classifiers. We compare the performance of feature selec-

tion algorithms over predefined set of features {10, 20, 50,

100, 200, 500, 1000, 1500} in terms of F1 score.

7.1.1 DSL Urdu news dataset

Tables 6 and 7 summarize the performance of ten feature

selection algorithms produced against 8 different bench-

mark test points over DSL Urdu news dataset using Naive

Bayes [26] and SVM [25] classifiers, respectively.

It can be summarized from Tables 6 and 7 that NDM

[47] marks the lowest performance at top 10 features;

however, with the increase in number of features, its

performance gets rocketed for both classifiers. NDM [47]

outperforms rest of the feature selection algorithms with a

huge margin after the induction of 150 or more number of

features. Although MMR [21] does not perform well with

Naive Bayes [26], it outshines other nine feature selection

13 https://github.com/facebookresearch/fastText/blob/master/pre

trained-vectors.md.
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algorithms on 50, and 100 number of features using SVM

[25] classifier. BNS [55] only manages to beat other

feature selection algorithms at 20, and 1500 number of

features with Naive Bayes [26] classifier compared to

SVM [25] where it is badly beaten by seven feature

selection algorithms as it marks the second lowest per-

formance of 89%. While GINI [59] and RDC [56] show

the worst performance for both classifiers, all other fea-

ture selection algorithms show a mix trend across all test

points.

In a nutshell, Naive Bayes [26] outperforms SVM [25]

by revealing a better performance. Moreover, the perfor-

mance of Naive Bayes [26] reaches the peak of 94% than

SVM [25] which manages to produce the performance of

only 91%.

7.1.2 CLE Urdu Digest 1M dataset

Ten feature selection algorithms performance fig-

ures against 8 different benchmark test points over CLE

Urdu Digest 1M dataset using Naive Bayes, and SVM

classifiers are shown in Tables 8 and 9.

For CLE Urdu Digest 1M dataset, ODDS [58] perfor-

mance begins at low of just 53%, and 59% with Naive

Bayes [26] and SVM [25], but it shows an upward trend

until 200 number of features with both classifiers consid-

ering the trends depicted by Tables 8 and 9. Although

ODDS [58] outperforms nine feature selection algorithms

at four benchmark test points (no. of features= 100, 200,

500, 1000) using Naive Bayes [26], it fails to produce

highest performance with SVM [25] classifier. Contrarily,

CHISQ [48] does not produce good performance with

Naive Bayes [26] classifier, but it manages to reveal best

performance with SVM [25] classifier. CHISQ [48] either

equalizes or surpass the performance of nine feature

selection algorithms at most test points. Although NDM

[47] performance rises almost gradually until 200 number

of features, afterwards its performance fluctuates and fails

to surpass best performance figures. Likewise, feeding

MMR [21] ranked features to both classifiers, performance

Table 6 Performance of ten

feature selection algorithms

against 8 different benchmark

test points over DSL Urdu news

dataset using Naive Bayes

classifier

Feature selection algorithms Benchmark test points

10 20 50 100 200 500 1000 1500

RDC [56] 0.83 0.85 0.85 0.88 0.90 0.91 0.90 0.89

NDM [47] 0.70 0.76 0.87 0.90 0.93 0.94 0.94 0.88

MMR [21] 0.71 0.82 0.88 0.91 0.91 0.91 0.91 0.89

POISON [60] 0.82 0.86 0.90 0.89 0.91 0.92 0.92 0.89

GINI [59] 0.77 0.81 0.88 0.87 0.88 0.90 0.90 0.90

ACC2 [55] 0.82 0.88 0.87 0.88 0.89 0.90 0.90 0.90

ODDS [58] 0.70 0.82 0.88 0.91 0.91 0.91 0.90 0.89

IG [57] 0.81 0.86 0.90 0.91 0.91 0.92 0.91 0.89

CHISQ [48] 0.79 0.87 0.90 0.91 0.91 0.92 0.91 0.89

BNS [55] 0.81 0.88 0.87 0.88 0.89 0.90 0.91 0.90

Peak performance of every classifier is highlighted in bold for each experimental dataset

Table 7 Performance of ten

feature selection algorithms

against 8 different benchmark

test points over DSL Urdu news

dataset using SVM classifier

Feature Selection Algorithms Benchmark Test Points

10 20 50 100 200 500 1000 1500

RDC [56] 0.80 0.79 0.80 0.84 0.86 0.88 0.88 0.88

NDM [47] 0.74 0.78 0.86 0.88 0.90 0.91 0.91 0.90

MMR [21] 0.77 0.83 0.87 0.89 0.89 0.88 0.89 0.90

POISON [60] 0.80 0.83 0.85 0.88 0.87 0.89 0.88 0.90

GINI [59] 0.76 0.77 0.83 0.83 0.83 0.86 0.88 0.88

ACC2 [55] 0.80 0.84 0.82 0.85 0.86 0.87 0.88 0.89

ODDS [58] 0.74 0.83 0.86 0.88 0.88 0.89 0.89 0.89

IG [57] 0.83 0.85 0.84 0.88 0.89 0.89 0.89 0.90

CHISQ [48] 0.81 0.85 0.86 0.88 0.88 0.88 0.90 0.90

BNS [55] 0.81 0.83 0.82 0.85 0.87 0.87 0.88 0.88

Peak performance of every classifier is highlighted in bold for each experimental dataset
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kept increasing until 200 number of features. After 200

features, its performance declines almost gradually with

Naive Bayes [26] and shows mixed trend with SVM [25]

classifier. While POISON [60] marks the worst perfor-

mance with Naive Bayes [26], GINI [59] shows the lowest

performance with SVM [25] classifier. The rest of the

feature selection algorithms show both upward and

downward trends across test points for both classifiers, but

they produce better performance figures with SVM [25]

classifier.

As a whole, SVM [25] outshines Naive Bayes [26] for

CLE Urdu Digest 1M dataset. Moreover, the performance

of SVM [25] reaches the peak of 83% than Naive Bayes

[26] which only manages to reach at 68%.

7.1.3 CLE Urdu Digest 1000K dataset

Tables 10 and 11 elaborate the performance of ten feature

selection algorithms on CLE Urdu Digest 1000k dataset

using Naive Bayes [26] and SVM [25] classifiers,

respectively.

It can be seen from Tables 10 and 11, with Naive Bayes

[26] classifier, CHISQ [48] produces the highest perfor-

mance until 100 number of features but its performance

dips sharply with the induction of more features. With

SVM [25] classifier, CHISQ [48] reveals a similar trend

until 200 number of features but decreases slightly after-

wards. CHISQ [48] manages to beat nine feature selection

algorithms with Naive Bayes [26] as the performance of

most feature selection algorithms start declining after 100

number of features. While NDM [47] manages to beat

other feature selection algorithms at two benchmark test

points (number of features= {1000, 1500}), MMR [21]

reveals better performance at 200, and 500 number of

features with Naive Bayes [26] classifier, whereas NDM

[47] outshines rest of the feature selection algorithms at

four test points {20, 50, 100, 200} with SVM [25] as

compared to POISON [60] which manages to surpass the

Table 9 Performance of ten

feature selection algorithms

against 8 different benchmark

test points over CLE Urdu

Digest 1M dataset using SVM

classifier

Feature Selection Algorithm Benchmark Test Points

10 20 50 100 200 500 1000 1500

RDC [56] 0.69 0.70 0.73 0.76 0.79 0.77 0.78 0.78

NDM [47] 0.55 0.67 0.76 0.81 0.81 0.79 0.76 0.80

MMR [21] 0.62 0.68 0.71 0.77 0.78 0.79 0.80 0.78

POISON [60] 0.53 0.64 0.75 0.76 0.83 0.82 0.80 0.78

GINI [59] 0.27 0.34 0.60 0.67 0.70 0.70 0.78 0.79

ACC2 [55] 0.67 0.69 0.77 0.79 0.79 0.79 0.78 0.78

ODDS [58] 0.59 0.69 0.74 0.77 0.80 0.76 0.80 0.82

IG [57] 0.66 0.69 0.75 0.79 0.78 0.82 0.81 0.78

CHISQ [48] 0.62 0.70 0.77 0.77 0.83 0.82 0.81 0.79

BNS [55] 0.67 0.71 0.74 0.78 0.80 0.79 0.78 0.78

Peak performance of every classifier is highlighted in bold for each experimental dataset

Table 8 Performance of ten

feature selection algorithms

against 8 different benchmark

test points over CLE Urdu

Digest 1M dataset using Naive

Bayes classifier

Feature Selection Algorithm Benchmark Test Points

10 20 50 100 200 500 1000 1500

RDC [56] 0.65 0.64 0.66 0.63 0.62 0.61 0.59 0.55

NDM [47] 0.51 0.58 0.63 0.64 0.65 0.61 0.57 0.60

MMR [21] 0.52 0.54 0.58 0.60 0.62 0.59 0.51 0.46

POISON [60] 0.50 0.60 0.61 0.61 0.62 0.56 0.48 0.45

GINI [59] 0.13 0.14 0.46 0.59 0.62 0.62 0.62 0.60

ACC2 [55] 0.65 0.66 0.65 0.65 0.64 0.62 0.57 0.53

ODDS [58] 0.53 0.56 0.62 0.66 0.68 0.65 0.64 0.56

IG [57] 0.62 0.62 0.63 0.64 0.63 0.60 0.49 0.45

CHISQ [48] 0.57 0.59 0.64 0.63 0.62 0.57 0.48 0.48

BNS [55] 0.65 0.64 0.64 0.64 0.64 0.63 0.56 0.53

Peak performance of every classifier is highlighted in bold for each experimental dataset

5456 Neural Computing and Applications (2021) 33:5437–5469

123



performance of other feature selection algorithms at only

one test point (number of features=500). Rest of the feature

selection algorithms mark a mixed trend for both classifier,

but produce better performance figures with SVM [25]

classifier. Among all, GINI [59] shows the worst perfor-

mance with both classifiers.

In a nutshell, once again SVM [25] outshines Naive

Bayes [26] by revealing a better performance. Furthermore,

the performance of SVM [25] reach the peak of 92% than

Naive Bayes [26] which manages to produce the perfor-

mance of only 81%.

7.1.4 Discussion

In order to provide a bird’s eye view over the performance

of each filter-based feature selection algorithm, this section

reports the average performance of ten feature selection

algorithms across three datasets. To assess the discrimi-

native power of features ranked by ten feature selection

algorithms, we select subset (10, 20, 50, 100, 200, 500,

1000, 1500) of top k features to feed Naive Bayes [26] and

SVM [25] classifiers. Based on predefined subset of fea-

tures, Tables 12, 13 and 14 show the best performing

feature selection algorithm at each benchmark test point

using Naive Bayes [26] and SVM [25] classifiers for two

closed source (CLE Urdu Digest 1000K, CLE Urdu Digest

1M) and one presented dataset (DSL Urdu News).

For DSL Urdu news dataset, Table 12 illustrates that

NDM [47] produces the best performance with both clas-

sifiers on three same benchmark test points (number of

features= 200, 500, 1000), whereas MMR [21] reveals the

top performance at 50, 100, and 1500 number of features

with SVM [25] only. While BNS [55] manages to produce

promising performance at two test points, ODDS [58] and

RDC [56] outperform rest of the feature selection algo-

rithms at only one test point with Naive Bayes [26] clas-

sifier. On the other hand, for SVM [25] classifier, IG [57]

attains best performance at two test points compared to

Table 11 Performance of ten

feature selection algorithms

against 8 different benchmark

test points over CLE Urdu

Digest 1000K dataset using

SVM classifier

Feature Selection Algorithms Benchmark Test Points

10 20 50 100 200 500 1000 1500

RDC [56] 0.63 0.64 0.67 0.65 0.74 0.73 0.72 0.65

NDM [47] 0.70 0.81 0.92 0.90 0.87 0.73 0.66 0.69

MMR [21] 0.66 0.74 0.85 0.86 0.81 0.82 0.72 0.68

POISON [60] 0.61 0.70 0.84 0.85 0.86 0.84 0.75 0.66

GINI [59] 0.50 0.47 0.54 0.59 0.64 0.77 0.75 0.71

ACC2 [55] 0.61 0.65 0.67 0.73 0.72 0.75 0.74 0.67

ODDS [58] 0.71 0.79 0.74 0.86 0.85 0.78 0.68 0.64

IG [57] 0.63 0.68 0.80 0.86 0.81 0.80 0.75 0.66

CHISQ [48] 0.69 0.72 0.77 0.83 0.86 0.82 0.71 0.66

BNS [55] 0.61 0.64 0.67 0.70 0.77 0.75 0.74 0.67

Peak performance of every classifier is highlighted in bold for each experimental dataset

Table 10 Performance of ten

feature selection algorithms

against 8 different benchmark

test points over CLE Urdu

Digest 1000K dataset using

Naive Bayes classifier

Feature selection algorithm Benchmark test points

10 20 50 100 200 500 1000 1500

RDC [56] 0.57 0.58 0.56 0.55 0.51 0.31 0.25 0.17

NDM [47] 0.63 0.70 0.71 0.55 0.40 0.27 0.36 0.28

MMR [21] 0.64 0.65 0.81 0.71 0.67 0.51 0.31 0.21

POISON [60] 0.50 0.50 0.55 0.57 0.43 0.36 0.21 0.22

GINI [59] 0.35 0.35 0.46 0.50 0.52 0.39 0.21 0.10

ACC2 [55] 0.60 0.63 0.67 0.60 0.44 0.37 0.17 0.17

ODDS [58] 0.64 0.73 0.70 0.70 0.62 0.41 0.31 0.20

IG [57] 0.69 0.76 0.74 0.71 0.46 0.32 0.21 0.19

CHISQ [48] 0.73 0.72 0.81 0.79 0.61 0.46 0.31 0.22

BNS [55] 0.61 0.63 0.67 0.61 0.50 0.37 0.12 0.17

Peak performance of every classifier is highlighted in bold for each experimental dataset
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Naive Bayes [26] classifier where it manages to mark best

performance at only one test point. All other feature

selection algorithms such as ACC2 [55], GINI [59], POI-

SON [60], and CHISQ [48] have failed to outshine the peak

performance of other feature selection algorithms with

SVM [25] or Naive Bayes [26] classifier at any test point.

Turning towards the CLE Urdu Digest 1000k dataset,

Table 13 depicts that NDM [47] once again reveals

promising performance with both classifiers as it outshines

other feature selection algorithms at four test points using

SVM [25] (no. of features=20, 50, 100, 200) and at two test

points using Naive Bayes [26] (no. of features=1000,

1500), whereas CHISQ [48] and MMR [21] show good

performance with only Naive Bayes [26] classifier at two

test points. While ODDS [58] and POISON [60] manage to

produce best performance at one test point each using SVM

[25] classifier, IG [57] once again shows mixed trend as it

produces good performance with both classifiers. All other

feature selection algorithms such as RDC [56], BNS [55],

and ACC2 [55] fail to outperform other on any test point

with any classifier.

Contrarily, in CLE Urdu Digest IM dataset, ODDS [58]

reveals promising performance at four test points with

Naive Bayes [26] and at one test point with SVM [25] as

shown by Table 14. While ACC2 [55] shows highest per-

formance on the induction of 10, and 20 number of features

with Naive Bayes [26], and at 50 number of features with

SVM [25] classifier, NDM [47] and RDC [56] mark best

performance at one test point with each classifier. On the

other hand, CHISQ [48] performs well with SVM [25]

classifier only. Likewise, BNS [55] and POISON [60] also

manage to beat other feature selection algorithms at one

test point with SVM [25] classifier, whereas MMR [21],

GINI, and IG [57] have failed to beat other feature selec-

tion algorithms with any classifier and test point.

Furthermore, Tables 15, 16 and 17 highlight the highest

performance attain by each feature selection algorithm

against particular test point using any classifier for all three

corpora.

It can be clearly seen from Table 15 that NDM [47]

outperforms rest of the feature ranking metrics by revealing

the highest performance figure of 94% at 1000 number of

features on DSL Urdu news dataset. Three algorithms

{POISON [60], IG [57], CHISQ [48]} produce second

highest performance of 92% on the induction of top 500

features. While MMR [21], ODDS [58], RDC [56], and

Table 13 Best performing feature selection algorithm against each benchmark test point on CLE Urdu Digest 1000k dataset

Classifier Number of Features

10 20 50 100 200 500 1000 1500

NB [26] CHISQ [48] IG [57] CHISQ [48] CHISQ [48] MMR [21] MMR [21] NDM [47] NDM [47]

SVM [25] ODDS [58] NDM [47] NDM [47] NDM [47] NDM [47] POISON [60] IG [57] GINI [59]

Table 14 Best performing feature selection algorithm against each benchmark test point on CLE Urdu Digest 1M dataset

Classifier Number of Features

10 20 50 100 200 500 1000 1500

NB [26] ACC2 [55] ACC2 [55] RDC [56] ODDS [58] ODDS [58] ODDS [58] ODDS [58] NDM [47]

SVM [25] RDC [56] BNS [55] ACC2 [55] NDM [47] CHISQ [48] POISON CHISQ [48] ODDS [58]

Table 12 Best performing feature selection algorithm against each benchmark test point on DSL Urdu News dataset

Classifier Number of Features

10 20 50 100 200 500 1000 1500

NB [26] RDC [56] BNS [55] IG [57] ODDS [58] NDM [47] NDM [47] NDM [47] BNS [55]

SVM [25] IG [57] IG [57] MMR [21] MMR [21] NDM [47] NDM [47] NDM [47] MMR [21]
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BNS [55] attain third highest performance of 91% at dif-

ferent test points, GINI [59] and ACC2 [55] both mark the

performance of 90% at same test point (number of

features = 500).

On the basis of the figures reported in Table 16, for CLE

1000K dataset, NDM [47] reveals the highest performance

figure of 92% at 50 number of features. Majority of the

algorithms {MMR [21], ODDS [58], IG [57], CHISQ [48],

POISON [60]} reveal second best performance of 86% on

the account of different number of features. In addition,

BNS [55] and GINI [59] produce third highest performance

of 77% at different test points, whereas ACC2 [55] and

RDC [56] show least best performance figures of 75%, and

74% on the induction of 500, and 200 number of features

respectively.

However, POISON [60] and CHISQ [48] produce the

highest performance figure of 83% at same test point

(number of features = 200) for CLE Urdu Digest

1M dataset as illustrated by Table 17. IG [57] and ODDS

manage to produce the second best performance of 82% at

different number of features. Likewise, NDM [47] marks

third highest performance figure of 81%, whereas BNS

[55] and MMR [21] manage to produce fourth highest

performance figure of 80% on the induction of different

features. Remaining three feature selection algorithms

{ACC2 [55], RDC [56], GINI [59]} reveal lowest best

performance figure of 79% at different number of features.

Moreover, we compare the average performance of all

feature selection algorithms against each corpus. Average

performance is calculated by taking the ratio between

number of outperforming test points and total number of

test points with both classifiers which are 16. For each

algorithm, outperforming test points are those test points

over which an algorithm beats all other feature selection

algorithms on certain dataset but regardless of classifier.

For instance, as IG [57] outperforms nine feature ranking

metrics at three test points (no. of features =10, 20, 50) in

DSL Urdu news dataset, so IG [57] will get the score of

18.75 which is computed as below:

Score on DSL Urdu news dataset

¼ ðoutperforming test points /total test pointsÞ � 100
¼ ð3=16Þ � 100
¼ 18:75

Considering the trends shown in Table 18, on DSL Urdu

news dataset, average performance 37.5% of NDM [47]

feature selection algorithm is the highest. MMR [21] and

IG [57] produce second best average performance of

18.75%. While BNS [55] marks third highest average

performance of 12.75%, RDC [56] and ODDS [58] reveal

Table 16 Peak performance figures of ten feature selection algorithms on CLE Urdu Digest 1000K dataset using Naive Bayes and SVM

classifiers

FR Metric RDC [56] NDM [47] MMR [21] POISON [60] GINI [59] ACC2 [55] ODDS [58] IG [57] CHISQ [48] BNS [55]

Test Point 200 50 100 200 500 500 100 100 200 200

F1 Score 0.74 0.92 0.86 0.86 0.77 0.75 0.86 0.86 0.86 0.77

Table 17 Peak performance figures of ten feature selection algorithms on CLE Urdu Digest 1M dataset using Naive Bayes and SVM classifiers

FR Metric RDC [56] NDM [47] MMR [21] POISON [60] GINI [59] ACC2 [55] ODDS [58] IG [57] CHISQ [48] BNS [55]

Test Point 200 100 1000 200 1500 100 1500 500 200 200

F1 Score 0.79 0.81 0.80 0.83 0.79 0.79 0.82 0.82 0.83 0.80

Table 15 Peak performance figures of ten feature selection algorithms on DSL Urdu news dataset using Naive Bayes and SVM classifiers

FR Metric RDC [56] NDM [47] MMR [21] POISON [60] GINI [59] ACC2 [55] ODDS [58] IG [57] CHISQ [48] BNS [55]

Test Point 500 1000 100 500 500 500 100 500 500 1000

F1 Score 0.91 0.94 0.91 0.92 0.90 0.90 0.91 0.92 0.92 0.91
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the lowest average performance of 6.25%. However, four

feature selection algorithms {POISON [60], GINI [59],

ACC2 [55], CHISQ [48]} do not outperform other feature

selection algorithms at any test point at all. Likewise, on

CLE Urdu Digest 1000K dataset, NDM [47] attains same

highest average performance (37.5%). CHISQ marks sec-

ond highest average performance of 18.75%, MMR [21],

and IG [57] both reveal third best average performance of

12.75%. Three feature selection algorithms POISON [60],

GINI [59], and ODDS [58] reveal lowest average perfor-

mance of 6.25%. Among all, three algorithms {RDC [56],

ACC2 [55], BNS [55]} fail to outperform other feature

selection algorithms at any test point.

Furthermore, on CLE Urdu Digest 1M dataset, ODDS

shows the best average performance of 31.25% followed

by 18.75% attained by ACC2 [55]. Three feature selection

algorithms {RDC [56], NDM [47], CHISQ [48]} mark the

third highest average performance of 12.5%. While POI-

SON [60] and BNS [55] manage to attain the lowest per-

formance of 6.25%, three feature selection algorithms

{MMR [21], GINI [59], IG [57]} fail to surpass the per-

formance of other feature selection algorithms at any test

point.

Taking into account the average performance of ten

feature selection algorithms across all three datasets, NDM

[47] performs well across all datasets; thus, it produces

highest average performance of 29.16%. Contrarily, three

feature selection algorithms {RDC [56], ACC2 [55], BNS

[55]} show the lowest average performance of 6.25%.

Ideally, feature selection algorithm shall assign greater

scores to extremely discriminative features, and lower

scores to less significant or irrelevant features. Considering

this, typical criteria to select highly discriminative features

are as follows: features appearing very rarely in a certain

class or very frequently across all classes are totally irrel-

evant. Thus, they shall be assigned lower scores. Contrar-

ily, features having relative frequencies in a certain class

and show in most of the corpus classes or do not show at all

are greatly discriminative; hence, they must be assigned

higher scores. Among all discussed feature selection

algorithms, ACC2 [55] is the simplest feature selection

algorithm which assigns scores by computing the absolute

difference among tpr, and fpr; however, it assigns same

scores to those features which have same frequencies in

negative or positive classes. This is why it fails to perform

better than other feature selection algorithms such as NDM

[47], MMR [21], ODDS [58], IG [57], and CHISQ [48].

NDM [47] shows the best performance on DSL Urdu

News, and CLE Urdu Digest 1000K datasets as it is a

modified version of ACC2 [55]. NDM [47] assigns high

score to those features which occur more times in one class

and least occur in other classes. To achieve this, it nor-

malizes the ACC2 [55] scores by dividing it with the

minimum of tpr, and fpr which results in better performance.

As no other feature selection algorithm considers the

minimum of tpr, and fpr while computing score for certain

feature, NDM [47] marks best performance for most

datasets. However, NDM [47] score may shoot out for

highly sparse and irrelevant features. For instance, consider

a dataset of six classes where the tpr of a feature is 0, and fpr
of the feature is 5, so in this case assuming that 0 is

approximately equal to 0.0001 to avoid infinity, NDM [47]

(0–5/0.0001= - 50,000) will assign very high score to an

irrelevant feature which is not correct at all. MMR [21]

which is the modified version of NDM [47] reduces such

high score by multiplying NDM [47] score with the max of

tpr,and fpr. According to Rehman et al. [47], the terms

located at the bottom right and top left corners of the

contour plot are more important than the ones located

around the diagonals. Although MMR [21] alleviates the

score of highly sparse and irrelevant features but in case of

small and non-skewed datasets where the term distribution

is pretty balanced, MMR [21] score gets affected by the

max of tpr,and fpr. In other words, MMR [21] performs best

Table 18 Average performance

of ten feature selection

algorithms against each corpus

FR Metric DSL Urdu News CLE Urdu Digest 1000K CLE Urdu Digest 1M Average

RDC [56] 6.25 0 12.5 6.25

NDM [47] 37.5 37.5 12.5 29.16

MMR [21] 18.75 12.5 0 10.41

POISON [60] 0 6.25 6.25 4.16

GINI [59] 0 6.25 0 2.08

ACC2 [55] 0 0 18.75 6.25

ODDS [58] 6.25 6.25 31.25 14.58

IG [57] 18.75 12.5 0 10.41

CHISQ [48] 0 18.75 12.5 10.41

BNS [55] 12.5 0 6.25 6.25

Peak performance of every classifier is highlighted in bold for each experimental dataset
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when the dataset is large and highly skewed in nature

which is not the case with experimental datasets. This is

why MMR [21] fails to obliterate the performance of NDM

[47]. ODDS [58] shows second best performance along

with IG [57], and CHISQ [48]. ODDS [58], IG [57], and

CHISQ [48] select the features in a univariate fashion;

therefore, these feature selection algorithms fail to handle

redundant features [152]. Also these feature selection

algorithms rank the features on the basis of class relevance,

but they fail to correctly discriminate those features which

have large distinct values.

7.2 Results of adopted deep learning-based
methodologies and the hybrid methodology

This section summarizes the performance of ten adopted

deep learning methodologies on the test sets of two closed

source (CLE Urdu Digest 1000K, CLE Urdu Digest 1M)

and one publicly available presented dataset (DSL Urdu

News) using F1 measure. It also reveals the performance

impact created by hybrid approach which combines tradi-

tional machine learning-based feature engineering and

deep learning-based automated feature engineering on the

test set of all three datasets.

The performance of four CNN, two RNN, four hybrid

models, and pre-trained multilingual language model

BERT [42] with full features, most frequent 2K, 3K,

10K features, and discriminative 250, 350, and 400 features

selected by filter-based feature selection algorithm (NDM)

[47] is summarized in Table 19. In this table, full

vocabulary is the set of unique terms found after corpus

preprocessing. MF implies most frequent terms of the

corpus, whereas NDM@ refers to the discriminative terms

selected by NDM [47]. For discriminative terms, firstly, all

unique terms of the training corpus are ranked using filter-

based feature selection algorithm (NDM) [47], and then,

top 250, 350, and 400 features of each class are selected in

order to feed the embedding layer.

Considering the figures shown in Table 19, feeding

adopted deep learning models with vocabulary of unique

words, among all, Yin et al CNN-based model [125] pro-

duces the highest performance figures of 70%, 71%, and

90% on CLE Urdu Digest 1000K, CLE Urdu Digest 1M,

and DSL Urdu news datasets, respectively. While Zhang

et al model [126] also produces the peak performance of

90% at DSL Urdu News dataset, Yogatama et al. [127]

RNN-based model replicates the peak performance of Yin

et al. [125] model on CLE Urdu Digest 1M dataset.

Conversely, by feeding deep learning models with most

frequent features instead of full features, over both DSL

Urdu news, and CLE Urdu Digest 1000K datasets, per-

formance of more than half of the adopted deep learning

methodologies increases as compared to CLE Urdu Digest

1M where the performance of exactly half of the deep

learning methodologies raises by a decent margin. Kalch-

brenner et al. model [124] surpasses the performance of all

models by marking the performance of 91% over DSL

Urdu News corpus, whereas Yin et al [125] CNN-based

model depicts the performance of 76% with 10K most

frequent features over CLE Urdu Digest 1M dataset, and

Table 19 Performance of adopted deep learning methodologies, and BERT over three corpora using full, most frequent and NDM features

Model type Models Datasets

DSL Urdu News CLE 1000K CLE 1M

Full

vocab

MF

@3K

NDM

@250

Full

vocab

MF

@2K

NDM

@350

Full

vocab

MF

@10K

NDM

@400

CNN Yoon Kim et al [123] 0.88 0.90 0.93 0.46 0.42 0.77 0.66 0.60 0.74

Kalchbrenner et al [124] 0.89 0.91 0.91 0.57 0.63 0.69 0.63 0.70 0.75

Yin et al [125] 0.90 0.90 0.90 0.70 0.67 0.78 0.71 0.76 0.80

Zhang et al [126] 0.90 0.90 0.90 0.50 0.56 0.71 0.63 0.65 0.72

RNN Yogatama et al [127] 0.88 0.89 0.91 0.51 0.64 0.56 0.71 0.68 0.68

Palangi et al [128] 0.87 0.89 0.91 0.48 0.54 0.50 0.68 0.65 0.71

HYBRID Siwei Lai et al [142] 0.88 0.88 0.91 0.60 0.57 0.69 0.70 0.66 0.77

Chen et al [143] 0.87 0.89 0.86 0.32 0.48 0.47 0.39 0.52 0.44

Zhou et al [144] 0.88 0.88 0.88 0.43 0.61 0.53 0.53 0.58 0.55

Wang et al [145] 0.88 0.90 0.90 0.66 0.62 0.50 0.58 0.57 0.56

BERT

Multilingual

[42]

12-layer, 768-hidden units,

12-heads

0.93 0.85 0.93 0.77 0.35 0.77 0.68 0.41 0.70

Peak performance of every classifier is highlighted in bold for each experimental dataset
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67% over CLE Urdu Digest 1000K with 2K most frequent

features.

On the account of hybrid methodology which feeds most

discriminative features ranked by filter-based feature

selection algorithm (NDM) [47], the performance of all

models gets rocketed. The performance of Yoon Kim et al.

CNN-based model [123] jumps from 88% to 93% over

DSL Urdu News dataset, whereas Yin et al CNN-based

model [125] performance raises from 70% to 78% over

CLE Urdu Digest 1000K, and 71% to 80% over CLE Urdu

Digest 1M dataset.

On the other hand, pre-trained language model BERT

[42] shows decent performance with multilingual vocabu-

lary. BERT [42] tokenizer is based on a WordPiece model

which greedily builds a fixed sized vocabulary of most

common words, subwords, and individual characters which

best fits certain language data. BERT [42] effectively

handles out of vocabulary words by generating the

embeddings of subword tokens which retain most of the

contextual meaning of the words, and individual charac-

ters. In this way, BERT [42] learns effective representa-

tions for the features present in experimental datasets.

Through utilizing multilingual vocabulary, BERT [42]

marks the promising performance of 93% over DSL Urdu

news dataset, whereas for CLE Urdu Digest 1000K dataset

which only consists of 270 documents, on average, BERT

[42] only utilizes 20 documents of each class for training,

but still it manages to mark the performance figure of 77%.

As BERT [42] only supports the sequence length up to 512

due to memory overhead, this is why BERT [42] manages

to achieve the limited performance of only 68% over CLE

Urdu Digest 1M dataset which is the largest among all

experimental datasets with an average document length of

around 1100 words. BERT [42] would have achieved better

results for CLE Urdu Digest 1M dataset if it had supported

sequence length higher than 512. In addition, with the

buffer size of 100, BERT [42] only marks the performance

of 91%, 70%, and 60% as compared to 93%, 77%, and

68% achieved with the buffer size of 400 over DSL Urdu

news, CLE Urdu Digest 1000K, and CLE Urdu Digest

1M datasets respectively.

Contrarily, BERT [42] does not perform well when we

replace its multilingual base vocabulary with the vocabu-

lary that only contains most discriminative features ranked

by NDM [47]. In addition, its performance further gets

deteriorated when a vocabulary of most frequent features is

passed during fine-tuning. This is because most of the

frequent features are irrelevant and also BERT [42] lacks

the embeddings of most of the features. Besides, although

BERT [42] with most discriminate features outshines the

performance figures of 68% produced by multilingual

vocabulary for CLE Urdu Digest 1M dataset; however,

according to our observation, it happens only because of

the fact that CLE Urdu Digest 1M has greater number of

discriminative features which overlap with multilingual

vocabulary as compared to CLE Urdu Digest 1M, and DSL

Urdu news datasets.

To summarize, BERT [42] proves extremely effective as

it almost replicates the performance of hybrid methodol-

ogy. Hybrid methodology raises the performance of all

adopted deep learning models up to great extent. This is

because it alleviates the noise from underlay dataset and

selects highly discriminative features to feed the models.

Evidently, for those datasets where average document

length lies within 512 tokens, BERT [42], and hybrid

methodology mark similar performance figures, however

for those datasets where average document length exceeds

from 512 tokens, hybrid methodology outshines the per-

formance of BERT [42].

Furthermore, in order to perform class-level comparison

of hybrid methodology and state-of-the-art adopted deep

learning methodologies, we present accuracy confusion

matrices of both methodologies on the test set of all three

datasets. To summarize the evaluation, among all 10

adopted deep learning models, three best performing deep

learning models are selected including CNN given by Yin

et al. [125], RNN proposed by Palangi et al. [128], and

Hybrid model presented by Siwei Lai et al. [142].

Confusion matrices produced by three best performing

adopted deep learning methodologies across three datasets

are shown in Fig. 4. It can be noted from Fig. 4, regardless

of model architecture, all three adopted methodologies are

unable to produce promising performance on any dataset as

automated feature engineering fails to extract discrimina-

tive features which helps the model to differentiate class

boundaries. For example, in DSL Urdu news dataset, most

of the testing samples of class world are wrongly classified

into three classes, namely health-science, entertainment,

and sports classes by the adopted models as the models

extract less discriminative features, thus get confused to

assign correct class labels. Likewise, in CLE Urdu Digest

1M dataset, few samples of almost every class are mis-

takenly classified into letter, health, culture or press classes,

whereas in CLE Urdu Digest 1000K dataset, three similar

classes interviews, letters, and press show the most number

of samples being wrongly classified in either of classes.

In contrast, hybrid methodology performs way better as

it utilizes filter-based feature selection algorithm (NDM)

[47]. With the induction of feature selection algorithm

(NDM) [47], a vocabulary of most discriminative features

is fed to the embedding layer of adopted deep learning

models which assists the model to better understand the

class boundaries; thus, it raises the performance of adopted

deep learning methodologies up to great extent on all three

datasets. As summarized by Fig. 5, models are no more

confused among highly similar classes such as letter,
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interview, and press in both CLE Urdu Digest 1M,

1000K datasets.

The general observations drawn while deploying neural

network architecture for Urdu text document classification

are as follows:

• When vocabulary of unique words is fed to the model,

bidirectional LSTM outperformed all other neural

architectures.

• When feeding highly discriminative features, convolu-

tion-based models are clearly the winners as they

perform better than recurrent- and hybrid-based models.

DSL-Yin et al Model [125] DSL-Palangi et al Model [128] DSL-Lai et al Model [142]

CLE1M-Yin et al Model [125] CLE1M-Palangi et Model [128] CLE1M-Lai et al Model [142]

CLE1000K-Yin et al Model
[125]

CLE1000K-Palangi et al Model
[128]

CLE1000K-Lai et al Model
[142]

Fig. 4 Confusion matrices of adopted best performing CNN [125], RNN [128], and hybrid [142] methodologies on DSL Urdu news, CLE Urdu

Digest 1M, and CLE Urdu Digest 1000K datasets
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However, in a few scenarios, hybrid models perform

similar to CNNs but not better.

• Model with multi-layer CNN architecture with different

filter sizes learns better data representation as compared

to the model in which CNN layers are linearly stacked

over each other.

• According to the experimentation, models give better

results when embedding layer is initialized by pre-

trained word vectors and get updated during training.

• Implementing wide convolutions increases the perfor-

mance of models on text document classification as

wide convolution equalizes the participation of all

features while convolving them.

DSL-Yin et al Model [125] DSL-Palangi et al Model [128] DSL-Lai et al Model [142]

CLE1M-Yin et al Model [125]
CLE1M-Palangi et al Model
[128]

CLE1M-Lai et al Model [142]

CLE1000K-Yin et al Model
[125]

CLE1000K-Palangi et al Model
[128]

CLE1000K-Lai et al Model
[142]

Fig. 5 Confusion matrices of hybrid methodology on DSL Urdu news, CLE Urdu Digest 1M, and CLE Urdu Digest 1000K datasets
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• For text document classification, the performance of

deep learning model increases significantly when the

model is fed with deterministic features instead of full

vocabulary having all unique terms.

• Max pooling layer plays a significant role to extract

discriminative features.

• Using multiple embedding layers with CNN architec-

ture produces better results when the model is fed with

deterministic features, while in all other scenarios, there

is no significant difference between the performance of

models that use single and multiple embedding layers.

8 Conclusion

This paper may be considered a milestone towards Urdu

text document classification as it presents a new publicly

available dataset (DSL Urdu News), introduces 10 filter-

based feature selection algorithms in state-of-the-art

machine learning-based Urdu text document classification

methodologies, adopts 10 state-of-the-art deep learning

methodologies, assesses the effectiveness of transfer

learning using BERT, and evaluates the integrity of a

hybrid methodology which harvests the benefits of both

machine learning-based feature engineering, and deep

learning-based automated feature engineering. Experi-

mental results show that in machine leaning-based Urdu

text document classification methodology, SVM classifier

outperforms Naive Bayes as all feature selection algo-

rithms produce better performance for two datasets (CLE

Urdu Digest 1000k, 1M) with SVM classifier. NDM and

CHISQ reveal the promising performance with both clas-

sifiers. Among all, GINI shows the worst performance with

both classifiers. Furthermore, adopted deep learning

methodologies fail to mark a promising performance with

trivial automated feature engineering. Although using a

vocabulary of most frequent features raises the perfor-

mance of adopted deep learning methodologies, it fails to

obliterate the promising performance figures of hybrid

approach. The hybrid methodology has proved extremely

versatile and effective with different languages. It sub-

stantially outperforms adopted deep learning-based

methodologies and almost equalizes the top performance of

machine learning methodologies across two datasets (DSL

Urdu News, CLE Urdu Digest 1M). Similarly, BERT

almost mimics the performance of hybrid methodology on

account of those datasets where the average document

length does not exceed 512 tokens. However, for datasets

where average document length exceeds from 512 tokens,

hybrid methodology performs better than BERT. Contrar-

ily, for all three datasets, hybrid methodology fails to

outshine the peak performance figures produced by

machine learning methodology due to the small size of

experimental datasets. To illustrate the point, consider the

class interviews of CLE Urdu Digest 1M which has only 38

documents, so in this scenario, deep learning-based hybrid

methodology only uses 22 documents for training which

are not good enough at all. A compelling future line of this

work would be the development of a robust neural feature

selection algorithm which can assists the models to auto-

matically select highly discriminative features from each

class. In addition, comparison of diverse data augmentation

approaches, investigating the impact of ensembling feature

selection algorithms and assessing whether feeding the

discriminative features of different filter-based feature

selection algorithm at multiple channels of deep learning

models can significantly raise the classification perfor-

mance for Urdu language
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116. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares

F, Schwenk H, Bengio Y (2014) Learning phrase representations

using rnn encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078

117. Conn AR, Scheinberg K , Vicente LN (2009) Introduction to

derivative-free optimization. SIAM

118. Jones DR, Schonlau M, Welch WJ (1998) Efficient global

optimization of expensive black-box functions. J Global Optim

13(4):455–492

119. Villemonteix J, Vazquez E, Walter E (2009) An informational

approach to the global optimization of expensive-to-evaluate

functions. J Global Optim 44(4):509

120. Beyer H-G (2001) The theory of evolution strategies. Springer,

Berlin

121. Bergstra J, Bengio Y (2012) Random search for hyper-param-

eter optimization. J Mach Learn Res 13(1):281–305

122. Yin W, Kann K, Yu M, Schütze H (2017) Comparative study of

cnn and rnn for natural language processing. arXiv preprint

arXiv:1702.01923

123. Yoon K (2014) Convolutional neural networks for sentence

classification. arXiv preprint arXiv:1408.5882

124. Nal K, Edward G, Phil B (2014) A convolutional neural network

for modelling sentences. arXiv preprint arXiv:1404.2188

125. Yin W, Schütze H (2016) Multichannel variable-size convolu-

tion for sentence classification. arXiv preprint arXiv:1603.04513

126. Zhang Y, Roller S, Wallace B (2016) Mgnc-cnn: a simple

approach to exploiting multiple word embeddings for sentence

classification. arXiv preprint arXiv:1603.00968

127. Yogatama D, Dyer C, Ling W, Blunsom P (2017) Generative

and discriminative text classification with recurrent neural net-

works. arXiv preprint arXiv:1703.01898

128. Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, Song X, Ward

R (2016) Deep sentence embedding using long short-term

memory networks: analysis and application to information

retrieval. IEEE/ACM Trans Audio Speech Language Process

24(4):694–707

129. Vu NT, Adel H, Gupta P, Schütze H (2016) Combining recur-

rent and convolutional neural networks for relation classifica-

tion. arXiv preprint arXiv:1605.07333

130. Wen Y, Zhang W, Luo R, Wang J (2016) Learning text repre-

sentation using recurrent convolutional neural network with

highway layers. arXiv preprint arXiv:1606.06905,

131. Wang J, Yu LC, Lai KR, Zhang X (2016) Dimensional senti-

ment analysis using a regional cnn-lstm model. In: Proceedings

of the 54th annual meeting of the association for computational

linguistics (Volume 2: Short Papers), pp 225–230

132. Chen T, Ruifeng X, He Y, Wang X (2017) Improving sentiment

analysis via sentence type classification using bilstm-crf and

cnn. Expert Syst Appl 72:221–230

133. Dauphin YN, Fan A, Auli M, Grangier D (2017) Language

modeling with gated convolutional networks. In: Proceedings of

the 34th international conference on machine learning-volume

70, pp 933–941. JMLR. org

134. Adel H, Schütze H (2016) Exploring different dimensions of

attention for uncertainty detection. arXiv preprint arXiv:1612.

06549

135. Hoffmann J, Navarro O, Kastner F, Janßen B, Hubner M (2017)

A survey on cnn and rnn implementations. In: PESARO 2017:

the seventh international conference on performance, safety and

robustness in complex systems and applications

136. Tang D, Qin B, Liu T (2015) Document modeling with gated

recurrent neural network for sentiment classification. In: Pro-

ceedings of the 2015 conference on empirical methods in natural

language processing, pp 1422–1432

137. Hermanto A, Adji TB, Setiawan NA(2015) Recurrent neural

network language model for english-indonesian machine

5468 Neural Computing and Applications (2021) 33:5437–5469

123

http://cogprints.org/5869/
http://cogprints.org/5869/
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1603.04513
http://arxiv.org/abs/1603.00968
http://arxiv.org/abs/1703.01898
http://arxiv.org/abs/1605.07333
http://arxiv.org/abs/1606.06905
http://arxiv.org/abs/1612.06549
http://arxiv.org/abs/1612.06549


translation: Experimental study. In: 2015 International confer-

ence on science in information technology (ICSITech),

pp 132–136. IEEE, 2015

138. Messina R, Louradour J (2015) Segmentation-free handwritten

chinese text recognition with lstm-rnn. In: 2015 13th Interna-

tional conference on document analysis and recognition (icdar),

pp 171–175. IEEE, 2015

139. Sundermeyer M, Ney H, Schlüter R (2015) From feedforward to
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