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Abstract
Discrimination of circular RNA from long non-coding RNA is important to understand its role in different biological

processes, disease prediction and cure. Identifying circular RNA through manual laboratories work is expensive, time-

consuming and prone to errors. Development of computational methodologies for identification of circular RNA is an

active area of research. State-of-the-art circular RNA identification methodologies make use of handcrafted features, which

not only increase the feature space, but also extract irrelevant and redundant features. The paper in hand proposes an end-

to-end deep learning-based framework named as CircNet, which does not require any handcrafted features. It takes raw

RNA sequence as an input and utilises encoder–decoder based convolutional operations to learn lower-dimensional latent

representation. This latent representation is further passed to another convolutional architecture to extract discriminative

features followed by a classification layer. We performed extensive experimentation to highlight different regions of

genome sequence that preserve the most important information for identifying circular RNAs. CircNet significantly

outperforms state-of-the-art approaches with a considerable margin 10.29% in terms F1 measure.
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1 Introduction

Ribonucleic acid (RNA) is an essential molecule for living

entities and is involved in multifarious biological processes,

such as translation, sponging, gene regulation and splicing

[1, 2]. Four basic nucleotides, namely guanine (G), uracil

(U), adenine (A) and cytosine (C) define the basic structure of

RNA molecules [3], where structure means to have knowl-

edge about its biological properties. Involvement of RNA

molecules in different biological functions and its

importance in different diseases attracts many researchers to

analyse RNAmolecules in more detail to find new functions

and roles in biological processes [4–6]. To understand dif-

ferent biological roles of RNA molecules, it is being classi-

fied into several categories based on its structure, physical

and chemical properties [7]. Generally, RNA molecules are

categorised into coding and non-coding RNA classes.

Previously, non-coding RNAs were considered junk of

code and thought to not participate in the process of

developing proteins [4, 8, 9]. However, lately it was dis-

covered that they not only participate in the development

of proteins, but also control the process in which proteins

gets produced. Furthermore, their involvement in various

biological processes, such as translation, splicing, gene

regulation and sponging, was discovered [1, 2]. Research

findings about the biological role of non-coding RNAs and

their importance for disease predictions attracts researchers

to explore this domain more precisely [10].

Furthermore, non-coding RNA can be further cate-

gorised into small non-coding RNA and long non-coding

RNA based on their sequence length. If the length is shorter

than 200 nucleotides, it is considered small, else it is
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defined as long [11]. Long non-coding RNA is further

diversified based on the structure and various physical and

chemical properties. In this case, two main categories exist,

linear and circular, which in turn have multiple subcate-

gories. On the other hand, small non-coding RNA is cat-

egorised into three main classes, namely Cis-regulatory,

Gene and Intron. These three classes are further categorised

into several subtypes. A graphical representation of non-

coding RNA hierarchy is shown in Fig. 1.

Following recent research about non-coding RNAs and

findings about their role in biological processes, disease

prediction and use in therapies, among different types of

non-coding RNA, circular RNA is a more attractive

research area [12]. Moreover, the identification of drugs

targeting the regulatory circuits of functional RNAs

depends on knowning its family, a task which is known as

RNA sequence classification. In order to perform circular

RNA classification, it is necessary to know about the for-

mation of circular RNA. In circular RNA formation, first

DNA is transcribed into a precursor messenger RNA (pre-

mRNA) [12]. This pre-mRNA consists of introns and exons

[13], where the intron sections are removed by a process

called splicing, which creates the mature messenger RNA

[13]. During the process of pre-RNA splicing, alternative

events may occur [14]. This includes back-splicing, a

special splicing alternative, which is responsible for cre-

ating circular RNA [15]. Compared to linear RNA, the

circular structure offers benefits, such as efficient copying,

high stability and being able to change the order of genetic

information contained in DNA [15]. A slight change in the

flow of the formation of circular RNA leads towards failure

of various biological processes and development of dis-

eases, such as cancer, Alzheimer or Parkinson [10, 16, 17].

Circular RNA is involved in various biological pro-

cesses; however, it is still not fully understood. Therefore,

precise identification of circular RNA is necessary in order

to investigate those processes in detail [7, 9, 18, 19].

Classification can help in the case of diagnosis, if this

specific circular RNA is promoting said disease, while it

can also help with treatments, by using RNA’s gene reg-

ulating potential which is able to suppress the disease

[17, 20, 21].

One way to classify or identify circular RNA is via

biological experiments in a laboratory, as it is done by

Zaghlool et al. [22] and Zirkel et al. [23]. Unfortunately,

performing such experiments suffers from multiple draw-

backs such as relatively low appearance rate of circRNA

compared to other RNA and the similarity of sequence

information with nonlinear RNA [22]. Following the

instructions from Zirkel et al. [23], it is obvious that pro-

viding all chemical materials is costly and performing all

steps is also time-consuming [23]. Furthermore, perform-

ing laboratory experiments is always error prone, as it can

be seen in Zaghlool et al. [22] where a low reproducibility

rate of different methods is reported.

Thanks to high-throughput technologies which produce

large amount of nucleotide sequencing data [12, 24],

researchers from bioinformatics domain utilise said data in

machine and deep learning approaches. Various computa-

tional methods have been proposed for tasks such as cir-

cular RNA classification [8, 11, 25], predicting DNA

methylation level [26, 27], nucleosome position prediction

[28], compound–protein interaction prediction [29],

chemical–chemical interaction prediction [30] and DNA

histone analysis and prediction [31, 32]. Due to the data

availability and the previously mentioned drawbacks of

Fig. 1 Non-coding RNA Taxonomy. Figure adapted from [7]
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laboratory experiments, the application of machine learn-

ing algorithms has become an active area of research. To

the best of our knowledge, there are currently three

approaches categorising between circular RNA and other

long non-coding RNA. The first approach PredcircRNA [8]

extracts different features, such as graph features, conser-

vation information, sequence compositions, ALU, tandem

repeat, SNP density and ORF features. Based on this

extraction a multiple kernel learning method is applied,

which works similar to a nonlinear SVM. This classifier

learns a linear weight combination of several kernels,

where a single kernel transforms the input feature repre-

sentation into a higher-dimensional space. Data which is

not linearly separable in its original space will become

linearly separable in higher-dimensional space. After this

transformation SVM is applied for classification.

As the previous method H-ELM [25] also extracts

similar features. In total 188 features are extracted from the

sequence. However, as an additional step, the authors use

the minimum redundancy maximum relevance (mRMR)

method in order to analyse them. Following this, a com-

bination of the incremental feature selection method and

hierarchical extreme learning is applied to find a set of

discriminative features. The main disadvantages of both

methods are the inability to capture the structure of circular

RNA and properly utilise the co-occurrence of trinu-

cleotides [11]. In our opinion, another drawback is the use

of so many handcrafted features, which make learning

more complex and difficult.

On the other hand circDeep [11] greatly reduces the

number of used features to three. It fuses a conservation

score, an RCM (Reverse Complement Matching) score of

the sequences adjacent to the circular RNA and a feature,

which is extracted from a combination of an ACNN

(Asymmetric Convolution Neural Network) and BLSTM

(Bidirectional Long Short-Term Memory). Using this

approach the authors were able to greatly improve the

performance. Unfortunately, this approach still has two

drawbacks. First, the extraction of RCM features is highly

time-consuming and it still utilises two handcrafted fea-

tures. However, the strength of current deep learning is

being able to find the relevant features by itself, which

creates an independence from manually handcrafted and

selected features.

Recent research about genome sequence analysis has

proved that deep learning-based methodologies perform

better when they are fed with raw DNA or RNA sequences

as compared to their performance when they are fed with

manually extracted features. Asima et al. [33] proposed an

end-to-end deep learning-based approach for the classifi-

cation of small non-coding RNA classification. Based on

the experimental results they concluded that when deep

learning methodologies are fed with handcrafted features,

their performance decreased because during the process of

feature extraction important information about occurrences

and positions of nucleotides may get lost. Their experi-

mental results proved that deep learning methodologies

perform better by extracting more discriminative features

form raw sequences based on the position and occurrences

of basic nucleotides. Moreover, there also exist several

other deep learning methodologies which achieve state-of-

the-art performance by processing raw RNA sequences

such as classification of long non-coding RNA and sub-

cellular localisation of lncRNA and micro-RNA. More-

over, use of autoencoder for better representation learning

is another active area of research. There exist several

computation methodologies which use encoder decoder-

based architecture for the tasks of translation [34] or driver

assistance systems [35].

In order to improve the performance of circular RNA

identification, we propose a two-stage classification

methodology where at first stage we utilise an encoder

decoder approach for the extraction of latent space and at

second stage, by utilising learned representation, a convo-

lutional neural network is used for the extraction of dis-

criminative features. Discriminative features are fed to a

fully connected layer for the discrimination of circular

RNA from other long non-coding RNA. Lastly, in order to

explore different regions of genome which contain more

important information about the identification of circular

RNA, we performed extensive experiments with combi-

nations of different sequence lengths, scaling methods and

number of added adjacent nucleotides. CircNet achieved

98.28%, 98.62%, 96.35% and 97.75% in terms of accuracy,

F1, MCC and specificity, respectively, and outperformed

previous state-of-the-art computational-based approaches

[8, 11, 25].

2 Materials and methods

This section briefly describes proposed CircNet approach

along with benchmark dataset and evaluation measures that

are used to evaluate the performance.

2.1 Benchmark dataset

In order to evaluate the integrity of proposed CircNet

approach we performed experimentation on the publicly

available benchmark dataset provided by Chaabane et al.

[11]. It consists of two classes, circular RNA and other

lncRNA. Circular RNA are defined as the positive samples,

while the other lncRNA are defined as negative. Cir-

cRNADb was used to extract the 31939 positive samples

[36]. On the other hand, the GENCODE dataset was used

to extract 19683 negative samples [37]. More details about
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the dataset, such as the minimal-, maximal-, average

sequence length and the standard deviation of all sequen-

ces, can be seen in Table 1.

2.2 Proposed methodology

We propose a two-stage classification methodology, where

at the first stage we learn discriminative features by util-

ising an encoder decoder architecture and at second stage

the learned features are passed to a convolutional neural

network for the extraction of more discriminative features

and to perform classification between circRNA and other

long non-coding RNA(lncRNA). The encoder performs

convolution and pooling, while the decoder is responsible

for deconvolution and un-pooling/up-sampling to recon-

struct the original raw sequence. The key idea is to apply

the encoder-based convolutional operations to learn

sequence representation in less space, while the up-sam-

pling decoder network makes sure whether the sequence

can be reconstructed from the learned space. This archi-

tecture substantially reduces the number of trainable

parameters and reuses the encoder’s pooling indices for the

discrimination between circular and lncRNA. A brief

description of encoder decoder architecture is given in

Sect. 1, and deep learning classifier is described in

Sect. 2.2.3. The process of forming circRNA includes

different intron and exon regions. In order to clearly

understand the area of genome that contains more impor-

tant information about the identification of circRNA we

take different segments of the genome which are briefly

described below in the preprocessing stage, Sect. 2.2.1.

2.2.1 Preprocessing

The dataset provided by Chaabane et al. [11] contains the

positional information of the RNA sequences in the human

genome, i.e. the start and end location of the long non-

coding RNA. In order to extract the nucleotide sequence,

the location information can be used on a dataset provided

by the UCSC Genome Browser [38]. Besides extracting the

sequence defined by the start and end location, we extend

the sequence by also including a certain amount of adjacent

nucleotides, since those regions might also embed valuable

features regarding circular RNA classification [39, 40]. We

define adjacent nucleotides as nucleotides which appear

directly after or before the previously mentioned start and

end location. The concept of adjacent nucleotides is illus-

trated in Fig. 2.

As it can be seen in Table 1, the sequences of circular

RNA dataset vary greatly in length from short to very long

sequences. Furthermore, deep learning models based on

convolutional neural networks require all input samples to

have same length of sequence. Here we set the length of

sequence equal to M and apply zero padding for the

sequences which are smaller than the defined sequence

length and truncate the nucleotides from sequences longer

than the fixed length. We performed three experiments of

changing the size of the sequences to a predefined length

M. We apply three padding approaches, denoted as post,

pre and middle. In post-padding we remove all nucleotides

appearing after the Mth nucleotide. If the sequence is

shorter than M nucleotides, an additional zero Z symbol is

added at the end of the sequence as many times as is

needed to achieve the predefined length. On the other hand

pre-padding removes or adds nucleotides at the beginning

of the sequence in order to scale the length to sizeM. In our

last approach, denoted as middle the first and last M/2

nucleotides of a sequence are kept, while removing or

adding nucleotides in between. An illustration of said

approaches can be seen in Table 2.

As deep learning methodologies require data in real

number format, we transform each sequence in one-hot

encoded representation which is used as the input for our

framework. Furthermore, we extract the sequence from the

genome dataset based on positional information, which

also includes the letter N in addition to the four nucleotides

A, C, G and U. Note that due to ambiguity between

nucleotides, an exact identification is not always possible.

Therefore, the additional symbol N represents either A, U,

C or G. Because we are interested in the positions of

nucleotides rather than removing it, we give it a one-hot

vector representation. In one-hot encoding every nucleotide

is represented by a vector of five bits, where four bits are 0

and one bit is 1. The position of the 1 bit is always the same

for a specific nucleotide. Using this methodology adenine

is represented as A ¼ ½1; 0; 0; 0; 0�, Cytosine

Table 1 Statistics of benchmark

dataset, where minimal

sequence length represents the

length of shortest sequence and

maximal sequence length

denotes the longest sequence

Measure Positive class Negative class Both classes

Minimal sequence length 201 204 201

Maximal sequence length 3,050,672 1,536,213 3,050,672

Average sequence length 19,924 18,653 19,439

Standard deviation of sequence lengths 34,439 47,025 39,716

On the other hand average and standard deviation of sequence length calculate the mean and the standard

deviation of the sequences in the corresponding classes
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C ¼ ½0; 0; 0; 1; 0�, Guanine G ¼ ½0; 0; 1; 0; 0�, Uracil

U ¼ ½0; 1; 0; 0; 0�, N ¼ ½0; 0; 0; 0; 1� and zero symbol

Z ¼ ½0; 0; 0; 0; 0�.

2.2.2 Latent space extraction using autoencoder

We utilise raw ncRNA sequences for the extraction of

latent space features, where each RNA sequence has four

basic nucleotides: adenine (A), cytosine (C), guanine

(G) and uracil (U). Furthermore, each nucleotide is enco-

ded using one-hot vector encoding, as described in

Sect. 2.2.1. A graphical representation of our autoencoder

used for latent space learning is shown in Fig. 3.

We use 1d convolutional layers with 128 filters, kernel

size 12 and stride size 1. This layer extracts discriminative

features based on the nucleotides’ occurrences and posi-

tions. Further to decrease the dimensionality we employ a

maxpooling layer with kernel size 2. Another set of con-

volutional layer, with 128 filters, kernel size 6 and stride

size 1, and maxpooling layer, with kernel size 2, is used to

extract more discriminative features. Reconstructing the

initial sequence based on the latent space verifies the

extraction of the most discriminative features. For this

purpose we use the same number of layers in reverse order.

The output of each convolutional layer is calculated by:

cxyf ¼
Xk

i¼1

X5

j¼1

nksf ;ijwksf ;ij þ bksf ;ij ð1Þ

where f denotes the fth filter, x and y the indices of the

output tensor and k and s define the currently observed

patch of the input tensor n given as kernel and stride size,

respectively. i and j denote indices inside this patch.

Furthermore, w and b define the learned weights and bia-

ses. Considering an input length of 200, then the input is

given as a 200� 5 tensor for the first convolutional layer.

Its output is defined by a 200� 128 tensor which gets

reduced to a 100� 128 after applying maxpooling. Max-

pooling calculates the output as a tensor where each index

xyf is calculated as following:

mxyf ¼ max cksf ð2Þ

where f denotes the fth filter, x and y the indices of the

output tensor and k and s define the currently observed

patch of the input tensor c given as kernel and stride size,

respectively. The second convolutional layer does not

change the shapes. However, the second maxpooling layer

again halves the shape to 50� 128, which is our latent

feature representation. The decoder has the same shapes in

reverse order. All layers are utilising Relu as the activation

function defined by:

aðyÞ ¼ maxð0; yÞ ð3Þ

where y is the output of a layer. However, in the last

reversal operation of the decoder sigmoid is applied, which

is defined by:

aðyÞ ¼ 1

1þ e�y
ð4Þ

2.2.3 Convolutional neural network

After learning the latent space features, we apply a simple

convolutional-based classifier, as shown in Fig. 4, on the

RNA sequences transformed into said latent feature space.

We apply two one-dimensional convolutional layers

with kernel size 3, stride size 1 and 64 and 32 filters for the

first and second layers, respectively. Following this we

have a dropout layer with a probability of 0.5 and max-

pooling with kernel size and stride size equal to 2. Finally a

flatten layer followed by a dense layer is used. Note that we

do not freeze the weights of the trained encoder in our

classification model, but instead fine-tuned the weights

during the second training stage.

Convolutional and maxpooling layer behave the same as

defined in Sect. 2.2.2. Dropout randomly ignores a fixed

percentage of neurons during the optimisation step. Simi-

larly to Sect. 2.2.2, all layers are using Relu as the acti-

vation function, besides the last dense layer which applies

softmax as defined by:

aðyÞi ¼
eyi

PK
j¼1 e

yj
for i ¼ 1; . . .K and y ¼ ðyi; . . .; yKÞ 2 RK

ð5Þ

Fig. 2 Considering the circular RNA hsa_circ_00001, defined by its

location chr1-230350957-230357321 in bed format, then this fig-

ure illustrates the location of three adjacent nucleotides

Table 2 Two different sequences ATAG and ATATGUAT are being

scaled to length 6 by either addition or removal with all three different

methods

Pre Middle Post

Addition ZZATAG ATZZAG ATAGZZ

Removal ATGUAT ATAUAT ATATGU
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Fig. 3 Graphical representation

of the employed autoencoder
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Lets assume we have an input sequence of length 200, our

input shape is defined by 200� 5 which gets transformed

to 50� 128 by the encoder, as defined in Sect. 2.2.2. Our

convolutional-based classifiers change the shape to 48� 64

and 46� 32 for the first and second convolutional layers.

Dropout does not change our shapes. On the other hand

maxpooling reduces the shape to 23� 32. Flattening this

shape results in a vector of size 736. Lastly the dense layer

calculates our final prediction with an output size of 2� 1.

2.3 Evaluation measures

To evaluate the performance of CircNet following evalu-

ation criteria, used by previous studies [8, 11, 25] con-

cerning circular RNA classification, are used: accuracy, f1-

measure, Matthews correlation coefficient, specificity and

recall. Furthermore, we also include the ROC curve and

AUC as additional evaluation measures. All evaluation

measures make use of four basic parameters:

• True Positive (TP): The amount of samples which are

correctly classified as positive samples

• True Negative (TN): The amount of samples which are

correctly classified as negative samples

• False Positive (FP): The amount of samples which are

wrongly classified as positive samples

• False Negative (FN): The amount of samples which are

wrongly classified as negative samples

Using these four parameters our evaluation metrics are

defined as following:

2.3.1 Accuracy

Accuracy, defined in Eq. 6, is a common metric and

describes the ratio of correctly classified samples to the

total number classified.

Accuracy ¼ ðTPþ TNÞ
ðTPþ TN þ FPþ FNÞ ð6Þ

2.3.2 F1-measure

F1 measure calculates the performance by making use of

precision and recall measures. The first one, defined in

Eq. 7, describes the ratio of the elements, which are cor-

rectly predicted as positive samples compared to all sam-

ples that are predicted to be positive. On the other hand

recall, defined in Eq. 8, calculates the ratio of elements,

which are correctly predicted as positive samples compared

to all positive samples in the ground truth data. As it can be

seen, these two measures describe different aspects and the

F1-Measure, defined in Eq. 9, is combining these two

measures into one, with equal focus on both.

Precision ¼ TP

TPþ FP
ð7Þ

Recall ¼ TP

TPþ FN
ð8Þ

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

ð9Þ

2.3.3 Matthews correlation coefficient

Accuracy is considered a good evaluation measure for

binary classification [41]. Even though we have a binary

classification problem, our dataset is slightly imbalanced

with having more positive samples. To precisely evaluate

the performance of classification methodology we use

MCC measure which is considered to be a better perfor-

mance evaluator when dataset is imbalanced.

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p

ð10Þ

Fig. 4 Graphical representation of the employed classifier
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2.3.4 Specificity

Specificity, defined in Eq. 11, describes the ratio of how

many negative elements were truly classified as negative.

Specificity ¼ TN

TN þ FP
ð11Þ

2.3.5 ROC curve and AUC

ROC (receiver operating characteristic curve) is the most

widely used evaluation metric to graphically show the

performance of a model. It has been extensively used in

many domains like signal detection, machine learning and

medical diagnosis [42]. Furthermore, it is also being uti-

lised in sequence classification tasks, similar to our case,

such as predicting the protein binding capabilities of cir-

cRNA [43, 44], protein–protein interaction prediction [45]

and protein virus interaction prediction [46]. The ROC

curve plots the true positive rate (TPR, it is also known as

recall, as described in Eq. 8) against the false positive rate

(FPR), as described in Eq. 12, at all classification thresh-

olds. The classification threshold describes the minimum

confidence score, outputted by a classifier in order to cat-

egorise a sample as positive. Decreasing the threshold, will

improve the TPR and FPR [42], which shows how the

model performs under different conditions, differentiating

it from other evaluation metrics which mostly only offer a

single value to estimate the capabilities.

This graphical representation can be summarised in a

single value, namely the AUC (Area Under the ROC

Curve), which measures the area underneath the curve.

Statistically, it can be interpreted as the expectation that a

random positive sample achieves a higher confidence score

compared to a random negative sample [42].

FPR ¼ FP

FPþ TN
ð12Þ

3 Experimental set-up and results

In order to ensure a fair comparison of CircNet with state-

of-the-art circular RNA classification approach, we per-

formed experimentation with standard data splits provided

by Chaabane et al. [11] where benchmark dataset has 75%

train, 15% test and 10% validation sets.

The learnable parameters of CircNet are optimised with

RMSprop, with an initial learning rate of 0.001 and the

mean squared error (MSE) as the loss function. RMSprop

is defined as following:

RMSprop : ð13Þ

vt ¼ q � vt�1 þ ð1� qÞ � g2t ð14Þ

Dwt ¼ � affiffiffiffiffiffiffiffiffiffiffiffi
vt þ �

p � gt ð15Þ

wtþ1 ¼ wt þ Dwt ð16Þ

RMSprop is applied on all weights wi in the network.

However, since the procedure is equal for all wi, i has been

dropped in the equation. wt denotes a weight at timestep t,

a the learning rate, � is a small positive value ensuring that

we do not divide by 0, gt the gradient at timestep t and q is

a predefined hyperparameter.

The loss function MSE is defined as:

MSE ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2 ð17Þ

where n is the number of samples, yi the ground truth

values and ŷi the corresponding prediction.

CircNet is trained for 100 epochs with a batch size of

128. In addition, if the validation loss does not improve for

7 epochs, the learning rate is reduced by a factor of 0.1.

However, if the loss does not decrease after 10 epochs we

stop our training process in a procedure known as early

stopping. Lastly, only the network weights corresponding

to the best validation loss are saved and used in the second

training stage. At the second training stage we employ the

same optimiser and use the same parameter settings as

described at the first stage. But the second stage learns a

classification problem, for which we use binary crossen-

tropy (BCE) as the loss function.

BCE ¼ � 1

n

Xn

i¼1

yi � logðŷiÞ þ ð1� yiÞ � logð1� ŷiÞ ð18Þ

where n is the number of samples, yi the ground truth

values and ŷi the corresponding prediction.

Using the above-defined settings we performed different

experiments on the dataset. As briefly described in

Sect. 2.2.1, where we defined the concept of adjacent

nucleotides, we process the input sequences in three dif-

ferent ways. First, we use a different length of adjacent

nucleotides, ranging from 0 to 100. Experiments with 0

adjacent nucleotides are performed in order to verify the

claim that important features can be extracted from

sequence regions of genome adjacent to circular RNA

sequence. The different extension lengths are combined

with the three different scaling methods middle, pre and

post, as described in Sect. 2.2.1, which in turn are com-

bined with scaling to different sequence lengths of 200, 500

or 1000. Considering all possible settings, 26 experiments

have been performed and the results are summarised in

Table 3.
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From Table 3, it can be concluded that when CircNet is

fed with only circular RNA sequences using the three

different padding schemes post, pre and middle, the per-

formance of CircNet is better when segments of sequences

are extracted from the start and end of the sequence. This

also proves that in a sequence more important information

lies at the beginning and end of a sequence. Moreover, it

can also be summarised that results of the CircNet

approach continuously improves with increased sequence

length. As when CircNet is fed with an input of 200

nucleotides and padding at the middle, it only achieves

0.9827, 0.9860, 0.9633 and 0.9813 in terms of accuracy, f1,

mcc and specificity measure, which was the highest among

all three padding approaches. However, when input length

increases to 500 nucleotides the performance of all three

measures improves. The same scenario holds true when the

length is increased to 1000 nucleotides. On the other hand

the experimental results also validate that by using adjacent

nucleotides performance gets improved. Along with the

addition of adjacent nucleotides, here once again middle

padding approach performed better as compared to other

pre- and post-padding approaches. Comparing the best

performing model which does not use adjacent nucleotides

with the worst performing model which uses adjacent

nucleotides, it shows an increase of 5.64% for accuracy,

4.41% for F1, 12.12% for MCC and 10.92% for specificity

for the latter model. Furthermore, the middle scaling

method has also performed superior to the other methods,

showing that the most important information is contained

at the border sections. In three cases, 100 adjacent

nucleotides with 1000 sequence length has shown the best

results, while 50 adjacent nucleotides with a sequence

length of 500 achieved the best specificity.

Furthermore, we evaluate the integrity of proposed

CircNet methodology using ROC curves and the respective

AUC values for all performed experiments, which are

shown in Fig. 5. In detail, Fig. 5a illustrates the curves

when the model was fed with different subparts of original

Table 3 Performance

evaluation of CircNet based on

different number of adjacent

nucleotides, different scaling

methods and sequence length

Number of adjacent nucleotides Scaling Seq. Len. Acc. F1 MCC Spec.

0 Middle 200 0.8985 0.9192 0.7832 0.8462

500 0.9063 0.9266 0.7997 0.8278

1000 0.9134 0.9315 0.8148 0.8544

Post 200 0.8301 0.8709 0.6335 0.6774

500 0.8293 0.8689 0.6315 0.6941

1000 0.8372 0.8705 0.6518 0.7642

Pre 200 0.8802 0.9052 0.7434 0.8115

500 0.8831 0.9067 0.7506 0.8299

1000 0.8751 0.9040 0.7328 0.7567

50 Middle 200 0.9827 0.9860 0.9633 0.9813

500 0.9818 0.9853 0.9615 0.9826

1000 0.9813 0.9849 0.9602 0.9755

Post 200 0.9771 0.9816 0.9514 0.9653

500 0.9771 0.9816 0.9514 0.9650

1000 0.9768 0.9813 0.9506 0.9646

Pre 200 0.9700 0.9758 0.9366 0.9670

500 0.9702 0.9759 0.9369 0.9677

1000 0.9702 0.9759 0.9368 0.9656

100 Middle 200 0.9810 0.9847 0.9598 0.9855

500 0.9823 0.9858 0.9624 0.9724

1000 0.9828 0.9862 0.9635 0.9775

Post 200 0.9770 0.9815 0.9511 0.9639

500 0.9773 0.9818 0.9517 0.9636

1000 0.9775 0.9819 0.9523 0.9677

Pre 200 0.9703 0.9760 0.9371 0.9660

500 0.9702 0.9759 0.9368 0.9639

1000 0.9698 0.9756 0.9360 0.9650

All experiments are evaluated on accuracy, F1, MCC and specificity as described in Sect. 2.3. Bolded are

the best evaluation scores and common experiment settings responsible for the best scores
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sequence and the curves of Fig. 5b represent different

subsequences including their extension by adjacent

nucleotides. A detailed description of how we define

adjacent nucleotides and what our motivation is in using

them is given in Sect. 2.2.1. Briefly said, these are

nucleotides appearing in front and after the circular RNA

sequence in the original genome. Since CircNet requires a

fix input size, we experimented with three different meth-

ods, which are explained in Sect. 2.2.1, to transform

sequences of differing length to the desired number of

nucleotides. From Fig. 5 it can be concluded that the

approach denoted with middle, in which we extract

nucleotides from the beginning and end of the sequence, is

superior compared to the circNet performance when it was

fed with pre- and post-sequence length selection method.

This highlights the fact that the first and last part contains

not only enough, but also the most crucial information in

order to discriminate circular RNA from non-circular. In

the case of not using adjacent nucleotides, middle length

scaling approach achieves an AUC of 0.96 in the experi-

mental set-up resulting in its worst AUC, where pre- and

post-length selection method have achieved AUC of 0.94

and 0.90, respectively, in their best performing experiment.

Moreover, as written in our motivation, important infor-

mation is contained in adjacent nucleotides, as it can be

seen from the AUROC values, where the AUC value is

always higher when including adjacent nucleotides com-

pared to using only the original ones. The worst AUC

measure in the adjacent case is 0.98, while the best AUC

value for the non-adjacent case is 0.97. Visually, this

improved performance can also be observed in the ROC

curves, since the curves in the adjacent case converge

faster to a high true positive rate, compared to the non-

adjacent ones. Lastly, the curves representing the adjacent

case all behave very similar and are quite close to each

other, unlike the non-adjacent case, where many curves

vary largely.

Figure 6 illustrates the comparison of our best per-

forming CircNet approach with three previous machine and

deep learning-based approaches for the task of circular

RNA classification. PredcircRNA [8] approach makes use

of too many handcrafted features which number 188.

Applying a multiple kernel learning method it only man-

ages produce 77% accuracy and 78.1% F1 measure and

much less MCC value of only 55.4%. On the other hand

H-ELM [25] approach uses the same amount of hand-

crafted features, but they only selected a subset of those

features as an input for a hierarchical extreme learning

algorithm. This slightly improves the performance of

accuracy and MCC values by around 1%. This approach

also improves about 8% in specificity, but does not manage

to achieve recall values better than PredcircRNA [8]. Cir-

cDeep [11] approach makes use of a combination of only

two handcrafted features with a feature representation

learned by a deep learning model, based on convolutional

neural networks and long short-term memories. Using

feature fusion learning methods, this improves the perfor-

mance values of accuracy, F1, MCC with a significant

margin of 16.37%, 10.08% and 38.62%, respectively,

compared to PredcircRNA [8]. The proposed CircNet

approach, which does not use any handcrafted features,

significantly improves the performance values of accuracy,

F1, MCC with a significant margin of 4.11%, 10.29% and

2.33%. We do not compare specificity and recall values of

proposed CircNet approach with the circDeep [11]

approach as authors do not report the values of these

measures. In comparison with other two approaches,

namely PredcircRNA [8] and H-ELM [25], the proposed

CircNet approach achieves 12.75% and 20.75% improve-

ment in terms of specificity. Similarly, CircNet approach

Fig. 5 CircNet performance in terms of AUROC for different experimental settings by taking subsequences from different positions along with

fusion of genome adjacent nucleotide information
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also outperforms both methodologies in terms of recall

with a significant margin of 20.5% from PredcircRNA [8]

and 28.3% from H-ELM [25] approach.

4 Conclusion

In this work we present a novel deep learning framework,

named CircNet, based on a combination of autoencoder

and convolutional-based classification for categorising

circular RNA from other lncRNA. Unlike previous works,

CircNet does not rely on any handcrafted features and

instead solely utilises deep learning methodologies. This

approach ensures, that the feature representation is more

fitting compared to handcrafted features, which often

extract redundant and irrelevant features. This is high-

lighted by the fact, that CircNet outperformed previous

state-of-the-art methodology CircDeep [11] by a significant

improvement of 4.11%, 10.29% and 2.33% in terms of

accuracy, F1 and MCC measure. To achieve this, CircNet

utilises a two-stage training procedure, where at first stage

an encoder–decoder-based architecture learns an accurate

lower-dimensional feature representation to describe the

long non-coding RNA sequences. Then, at second stage a

convolutional neural network classifies the sequences

based on their feature representation as calculated by the

encoder. Furthermore, we performed extensive experi-

mentation in order to find the most discriminative regions

of an RNA sequence by testing different sequence lengths,

scaling methods and extension of the sequence. We found

that our performance evaluation measures slightly

increased with longer sequences. However, the biggest

impact on performance is due to the scaling method and

extending the sequence. Extension of the sequence is done

by also incorporating the adjacent nucleotides, also known

as flanking introns, into the RNA sequence used as the

input. Lastly, the scaling method is responsible for scaling

all sequences to the same length. Our best performing

approach, denoted as middle, removes or adds nucleotides

in the middle of the sequence and not at the beginning or

end. Since this approach keeps the beginning and the end

of a sequence intact, it shows that the most crucial infor-

mation in discriminating between circular RNA and other

long non-coding RNA is located at them.

Finally, we hope that with an increased performance of

distinguishing between circular RNA and other long non-

coding RNA, we can help with further understanding the

role of circular RNA in biological processes, which in turn

help with the diagnosis and treatment of many severe

diseases, such as cancer, in a fast, cheap and accurate way

compared to laboratory experiments.
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