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ABSTRACT

A large number of algorithms has been proposed for
solving continuous optimisation problems. However,
there is limited theoretical understanding of the strengths
and weaknesses of most algorithms and their individual
applicability. Furthermore, the performance of these
algorithms is highly dependent on their control
parameters, which need to be configured to achieve a
peak performance. Automating the processes of selecting
the most suitable algorithm and the right control
parameters can help in solving continuous optimisation
problems effectively and efficiently. In this paper, a
simple online algorithm selector is proposed. It decides
on selecting the right algorithm based on the current state
of the search process to solve a given problem. Each
algorithm in the portfolio of the algorithm selector
competes with others and utilises the results of other
algorithms to locate the global optimum. The proposed
algorithm selector and the algorithms of the portfolio as
stand-alone algorithms were benchmarked on the noise-
free BBOB-2009 testbed. The results show that the
performance of the simple algorithm selector is better
than the performances of the individual algorithms in
general. It was also able to solve eleven out of twenty-
four functions of the test suite to the ultimate accuracy of
1078.

INTRODUCTION

A large number of search algorithms for solving
optimisation problem has been developed (Cuevas, et al.,
2020; Whitley, 2019). In most cases, the performance of
these algorithms can be further improved by introducing
small modifications through adjusting their control
(hyper) parameters (Vermetten, et al., 2020; EI-Mihoub,
et al, 2014). However, the no free-lunch theorem
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(Wolpert & Macready, 1997) states that no single
algorithm can outperform all other algorithms on all
optimisation problems. Based on this theorem, solving
any optimisation problem requires selecting a suitable
algorithm with a suitable configuration (Huang, et al.,
2019). Practitioners usually face the Algorithm Selection
(AS) problem and the Algorithm Configuration (AC)
problem when applying optimisation algorithms
(Kerschke, et al., 2018). The AS and the AC problems
have gained increasing attention in the last decades
(Huang, et al., 2019; Kerschke, et al., 2018).

Different methodologies have been followed to automate
deciding on the right algorithm and the right
configuration. Some approaches adopt Rice’s framework
(Rice, 1976) for solving the AS problem to learn from the
algorithms experience in solving different problems
(Kerschke, et al., 2018). Most of these approaches use
Rice’s features-based model to solve the AS (Cruz-
Reyes, et al., 2012) and the AC (Belkhir, et al., 2017)
problems. Most of these approaches depict the AS and
the AC problems as two separated problems in spite of
the strong relations between them (Jankovi¢ & Doerr,
2019). In most cases, the AS and AC problems are
addressed sequentially. This separation can affect the
algorithm efficiency or narrow the range of problems, on
which an approach can be applied. Few researches have
dealt with the problem as a Combined Algorithm
Selection and Hyper-parameter optimisation (CASH)
problem (Vermetten, et al., 2020).

Hyper-heuristics methodology (Drake, et al., 2019)
solves the AS and the AC problems using different
approaches. The generative hyper-heuristics explore the
space of the algorithmic components of algorithms to
design a customised search algorithm. This methodology
can be used to generate tailor-made and well-configured
optimisation algorithms to solve the CASH problem.
These approaches are also suitable for solving dynamic
problems. However, they can be extremely costly
(Miranda, et al., 2017).

On the other hand, the selective hyper-heuristics
approach deals with the AS problem as an optimisation
problem. A hyper-heuristic is employed to discriminate
between different search algorithms based on their



performance on a given problem. Following this
approach, a suitable algorithm is selected for each search
iteration. Off-line selective hyper-heuristics approaches
require featuring different states of different optimisation
problems. Whereas, online selective hyper-heuristics
approaches incur an additional high cost on the
optimisation process.

A simple online algorithm selector with minimum
overhead learning costs might be efficient in solving the
basic AS problem. Most state-of-the-art optimisation
algorithms utilise restart to resample good potential
solutions (Hansen, et al., 2021). Instead of restarting, a
simple selector can decide to resample a new solution or
select the right algorithm for the current search state
based on the most recent performances of a set of
optimisation algorithms. Based on this idea, a simple
algorithm selector is proposed in this paper.

A set of optimisation algorithms was chosen as a
portfolio of the algorithm selector. This set consists of
one multi-point and three single-point optimisation
algorithms. The multi-point algorithm is the Nelder-
Mead downhill simplex (Nelder & Mead, 1965). The
single-point algorithms are the one plus one Covariance
Matrix Adaptation Evolutionary Strategy, i.e. (1+1)-
CMA-ES (Igel, et al., 2006), the one plus one Evolution
Strategy with one-fifth success rule, i.e. (1+1)-ES
(Auger, 2009), and the Line Search with the STEP
(Swarzberg, et al., 1994), LSStep algorithm. This set of
single- and multi-point algorithms was selected to show
that different types of algorithms can be unified easily in
the proposed algorithm selector.

In the next section, the simple algorithm selector is
introduced. Then, the algorithms that constitute the
selector portfolio are briefly described. Before presenting
and discussing the results of the benchmarking, the
experimental setup is presented. The paper ends with the
conclusion and future work.

THE SIMPLE ALGORITHM SELECTOR

Most local search algorithms and even global search
algorithms rely on probabilistic restart to achieve
globalisation (Posik & Huyer, 2012). However, sharing
the optimisation resources by more than one algorithm
can reduce the risk of failure in solving a range of
optimisation problems.

The concept of the proposed algorithm selector is to rely
on a portfolio of optimisation algorithms instead of
relying on a single algorithm with probabilistic restart to
reach the global optimum. An algorithm selector with a
simple discriminating mechanism based on the current
state of the search can solve the AS problem with a
minimum overhead cost. The main aim of the algorithm
selector is to locate the global optimum and not to find
the best algorithm for a given problem.

The algorithm selector should have the ability to unify
single point and population-based search algorithms
within its framework. The algorithm selector should be

capable of distributing the search resources in an
effective way. It should be able to select a suitable
algorithm based on the current state of the search process
and to build on search results of previously selected
algorithms. The algorithm selector should enable
different algorithms to compete with each other and
cooperate to reach the global optimum.

We consider an objective function f: RP — R, where x
— f(x) to be minimised. To minimise this function, the
proposed algorithm selector follows the algorithm shown
in Algorithm 1. The algorithm selector starts by
initialising the search environment, line 1 in Algorithm
1. The initialisation process includes selecting an initial
point as a potential solution. Then, the selector chooses
randomly an algorithm from the portfolio and applies it
to the optimisation problem using the potential solution.
The selector checks whether the global optimum is
reached. In this case, the selector stops. Otherwise, it
assigns the selected algorithm a score, which is equal to
the change in the fitness of the potential solution. The
selector repeats the previous steps until reaching the
global optimum or all the algorithms of the portfolio are
applied.

In the case of not reaching the global optimum, two
algorithms from the portfolio are selected randomly. The
algorithm with the best score out of these two algorithms
is chosen for utilisation. If the last algorithm applied is
selected again, and that algorithm has probably reached a
local optimum, the algorithm selector resamples a new
potential solution to replace the local reached optimum.
Next, the new selected algorithm is applied and its score
is updated. The previous steps (12-19 in algorithm 1) are
repeated until reaching the target optimum or the search
resources are consumed.

Algorithm 1 : The Simple Algorithm Selector

1 initiate search environment

2 while not all algorithms of the portfolio selected

3 current algorithm = select an algorithm from the
algorithms portfolio randomly

4 apply current algorithm on the optimisation
problem

5 if target value reached

6 print results and exit

7 end if

8 current algorithm score = change in fitness

9 last selected = current algorithm

10 end while
11 while global optimum not reached

12 selected algorithms = select randomly two
algorithms

13 current algorithm = algorithm with best score of
selected algorithms

14 if last selected == current algorithm

15 resample new solution

16 end if

17 apply current algorithm on the optimisation
problem

18 current algorithm score = change in fitness

19 last selected = current algorithm

20 end while




The proposed algorithm selector can use a portfolio that
consists of a number of single- and multi-point search
algorithms. In this paper, a portfolio of four algorithms is
implemented. These algorithms are classified as local
search algorithms. These algorithms are briefly described
in the following sections.

THE NELDER-MEAD DOWINHILL SIMPLEX

The Nelder—Mead algorithm (Nelder & Mead, 1965) is
also known as the downhill simplex method. It is an
optimisation algorithm for real-value problems. The
Nelder-Mead method starts with a set of D + 1 initial
solutions, a simplex, where D is dimension of the search
space. A new solution is generated through reflecting the
worst solution on the centroid of the remaining D
solutions. Other operations are conducted to either
further improve the new generated solution or to focus on
the most promising region of the search space.

A pseudocode of Nelder-Mead method for function
minimisation is shown in algorithm 2. The simplex
method modifies the vertices of the simplex using four
operations to generate better solution based on the fitness
of the vertices. These operations are reflection, expansion,
contraction and shrinking. The coefficients of these
operations arey, %, p and o, respectively. Table 1 shows
the formulas for executing these operations in addition to
the formula for calculating the centroid. The reflection,
expansion and the contraction operations are applied to
the worst vertex. Meanwhile, the shrinking operation is
applied to all vertices except the best one. The standard
values for the operations coefficients are p=0.3, y=2,
y=0.5, and 0=0.5 (McKinnon, 1998) .

Table 1: Operations of Nelder-Mead Method

Formula

T~—n+t1
X = ;Zi=2 X

Xy = X¢ + p('xc - xn+1)

Xe = (1 + p)()xc — XcXn+1
Xout ¢ = (1 + pY)xe — pYxne
Xin ¢ = (1 - }/)xc —VXn+1
Xizzm+1 = Xi +0(X; — X1)

Operations on simplex

centroid calculation

reflection

expansion
outside contraction
inside contraction

shrinking

Starting with an initial solution, a simplex can be
generated around this solution. This initial solution
together with D generated points can be used as starting
points, which represent the vertex of the simplex. The
simplex can be generated by adding a small value (delta)
to each component of the initial solution. In this paper,
the value of delta is set to 0.00025 for components with
values of zero and a delta of 0.05 for other component
values. These values are used by Matlab in the
fminsearch function (Hansen, 2009).

EVOLUTION STRATEGIES

Evolution strategies (ES) for real-valued optimisation
usually rely on Gaussian random variations. They assume
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that the space around the global optimum can be
represented by a multi-variant distribution and the global
optimum is at the distribution’s centre. Variant ES
algorithms have been proposed to locate the global
optimum and determine the multi-variant distribution
around it by sampling points in the search space.

The (1+1)-ES algorithms start with an initial solution (x;,
i = 0) and assumes this is the mean of the distribution.
They resample a new solution according to the adopted
distribution. Once a better solution is found, this solution
becomes the new mean of the distribution. The algorithm
keeps a track of the changes in the objective function
values and the change in solutions’ locations in the search
space. The algorithm uses these changes to amend the
shape of the distribution to improve the quality of new
sampled solutions. In this section, two variants of the
(1+1)-ES are concisely described.

Algorithm 2 : The Nelder-Mead Algorithm

1 Input: (D+1) points

2 while not terminated do

3 order the vertices according to their fitness
4 f) < ) << f(Xp41)

5 calculate the centroid point of all vertices except
6  Xp+1Xc

7 calculate the reflection point x,.

9 Xp+1 = Xr

10 else

11 if f(x) < fxg)

12 calculate the expansion point X,

13 if f(x.) < f(x,)

14 Xp+1 = Xe

15 else

16 Xp+1 = Xr

17 end

18 else

19 if f(xp) < f(x,) < f(xps1)

20 calculate the outside contraction point X, .
2 i (Xout ) =< £ (xy)

24 xn+1 - xout,c

25 else :

26 shrink the simplex

27 end

28 clse

29 if f () = f(x_Dﬂ) ) )
30 calculate the inside contraction point X;;, .
31 iff(xin,c) < f(xD+1)

32 Xn+1 = Xcin

33 else

34 shrink the simplex

35 end

36 end

37 end

38 end

39 end

The (1+1)-ES with One-Fifth Success Rule Algorithm

This (1+1)-ES algorithm is based on the idea that the
search step from the current solution should increase in a
case of successive successful steps and should decrease
otherwise. Many successful steps indicates that the



search can be improved by taking a larger step. On the
other hand, very few successful steps indicates the search
step might be too large and need to be reduced.
According to the one-fifth success rule (Schumer &
Steiglitz, 1968), the step-size should not change if the
success probability of the sampled solutions is about one-
fifth, increase if the success probability is larger than one-
fifth and decrease otherwise.

The factors of 1.5 and 1.5Y* for increasing and
decreasing the step-size can implement the idea of the
one-fifth success rule (Auger, 2009). Pseudocode of the
(1+1)-ES with one-fifth success rule is shown in
Algorithm 3. A sample from the standard multivariate
normal distribution is selected randomly (z;, line 5). This
sample is multiplied by the step size o and is added to the
current mean of the distribution to generate a new
solution. The algorithm assumes the distribution is
symmetric around the global optimum.

Algorithm 3 : (1+1)-ES with One-Fifth Success Rule

1 Input: x,, 09

2 x.=xg

3 0 =0

4 while not terminated do
5 7= N(O,I)

6 x; =x. + 0z

7 if f() < fx)
8 X, = X;

9 c=150

10 else

11 g=15"14g
12 endif

13 end while

The (1+1)-CMA-ES Algorithm

CMA-ES algorithm (Hansen, 2006) add a covariance
matrix, C € R™™, component to the multi-variant
distribution, which is used to generate new solutions. By
appropriate adaptation of the covariance matrix, a more
accurate representation of the space around the global
optimum can be achieved. This help in locating the global
optimum, especially, for ill-conditioned problems.

The (1+1)-CMA-ES algorithm starts with an initial
solution (x,), or initial mean, as in any (1+1)-ES
algorithm. It also starts with an initial covariance matrix
(Cy) of the distribution. Usually, the algorithm starts with
a standard multi-variate normal distribution with an
initial global step size or sigma (d;). As in the case with
(1+1)-ES with one-fifth success rule, the changes in the
new sampled solution and its cost value are used to adapt
the mean the global step size. However, in the (1+1)-
CMA-ES, they are also used to adapt the covariance
matrix of the distribution.

The covariance matrix C; needs to be decomposed into
Cholesky factors in order to sample a general
multivariate normal distribution (i.e. C; = A; AT). A new
solution is generated using the multi-variant distribution
as shown in line 10 of Algorithm 4, which shows
pseudocode of the (1+1)-CMA-ES algorithm. The global

step size is then updated based on the average success
rate Pgyee € [0, 1]. The covariance matrix C is updated in
the case of a decrease in the cost values of new solutions
compared the cost of the current mean of the distribution.
The update is done based on the values of the average
success rate pg,.. , the global step size o and the
evolution path p.. Table 2 shows the rules for updating
these parameters and Table 3 shows the default parameter
values (Igel, et al., 2006).

Table 2: Updating rules of (1+1)-CMA-ES

Parameter .
Updating rules
Name P g
if f(x; < f(x;
average | /i) < 7D
success Psucciss = (1= €p)Psuce; +
te else
ral
psuccH.l = (1 - Cp)psuccl
() _ ptnrget
- 1 succj succ
step size | 0;4, = 0; X exp(5 <‘7mmet))
_ 1- Psucc
if DPsucc < Pthresh
evolution | Pe;yy = (1—6p)pe; +y/cc(2 = )4z
path else
Pejyq = (1- Cp)pcl'
if DPsucc < Pthresh T
Covariance Cit1 = (1 = €cop) C; + Ceop-PePe
matrix else ,
Ciy1 = (1 = ceop)Ci + Ceop- (PP’ + (2 — )G

Table 3: Parameters of the (1+1)-CMA-ES and their
Default Values
Step size control Covariance matrix adaptation
d: the damping parameter | c, : the learning rate for the
controls the rate of the step | evolution path
size adaptation

n 2
d=1+1 =2
£aT9E: the target success | Ccov: the learning rate for the
rate covariance matrix
target __ 2 c — L
succ T 171 €OV " nZi6

¢p : the learning rate for | pipresn : the threshold of the

the step size success rate to prevent fast
c = increase of C matrix axes with
P12 small step sizes

Pthresh = 0.44

Algorithm 4 : (1+1)-CMA-ES

1 Input: x,, 0y

2 Xc = X0, 0 = 0Og

3 Psucc = pstZZfEt’ Pc = 0,c=1

4  while not terminated do

5 decompose C; such that C; = AAT

6 z; = rnadom sample of N(0,I)

7 Xiv1 = Xc +0; Az,

8 Dsucci, = Updated_average_success_rate
9 0,41 = updated_step_size

10 if fa) < fx)

11 Xe = Xiy1

12 C;+1 = updated_covariance_matrix
13 end if

14 end while




LINE SEARCH WITH STEP

Line search algorithms are simple optimisation
algorithms. They are effective and efficient in solving
separable optimisation problems. They can be used to
discriminate between separable and non-separable
optimisation test functions (Posik & Huyer, 2012). The
algorithm starts with a randomly selected solution and
iterates through individual directions. It optimises the
function with respect to the chosen direction while
keeping the other components of the solution fixed. Once
the optimum in one direction is found, it switches to
another direction starting from the best-found solution.
No change in the objective value of the solution after
going through all the directions indicates a local optimum
and the algorithm stops.

The STEP method (Swarzberg, et al., 1994) is a
univariate global search algorithm with interval division.
The basic idea of the STEP is to sample a new solution
with the greatest chance of exceeding the best-found
solution.

Therefore, it starts with an initial interval as shown in
Algorithm 5. It calculates the objective values of the
endpoints of that interval. Then, it divides the interval
into two halves by sampling the middle point of the
interval. It determines the interval, which has the greatest
chance to include a solution, which is better than the
current best solution. It repeats the division process for
the most promising interval until reaching the stopping
criteria. The interval difficulty is used as criteria for
selecting the most promising interval. The algorithm
selects the interval that enables sampling a solution,
which is better than the current best solution.

To determine the difficulty of an interval, STEP assumes
a quadratic function y = ax? + bx + ¢ that goes through
the interval boundaries and y = fj.,; — €, Where f, . is
the objective function of the best found solution and € is
a small positive number. The value of € determines the
value by which f, ., is to be at least exceeded. In other
words, it determines the tolerance in objective function
values. In this paper, the value of € is set to 1078 (Posik
& Huyer, 2012). STEP uses the value of the coefficient a
of this quadratic function to measure the interval
difficulty. The interval with the smallest value of a is
more likely to enable sampling better solutions
(Swarzberg, et al., 1994).

Algorithm 5 : The STEP algorithm

Input: boundaries of the initial interval
evaluate the boundaries of the initial interval
sample the middle point of the interval
evaluate the middle point
add the intervals to the interval list
while not terminated do
determine the interval with the lowest difficulty
sample the middle point of this interval
evaluate the middle point
add the new intervals to the interval list
end while

— = 0 00 N W

—_ o
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EXPERIMENTS

This work tries to answer the question ‘Can a simple
algorithm selector outperform the individual algorithms,
those constitute its portfolio, on a range of optimisation
problems?’. To answer this question, the performance of
the algorithm selector needs to be compared with the
performances of the individual algorithms. Experiments
were conducted to evaluate the performance of different
algorithms on a range of optimisation problems.

Experimental Framework Description

The experiments were carried out using the Comparing
Continuous Optimisers (COCO) framework (Hansen, et
al., 2021). This framework was also used for the Black-
box Optimisation Benchmarking workshop at the
GECCO-2009 and 2010 conferences.

The experiments were conducted using the BOBB test
suite, which consists of 24 test functions (Hansen, et al.,
2009). The functions are classified based on their
properties as multimodality, ill-conditioning, global
structure and separability. All functions are scalable in
terms of dimensionality. The search domain is [-5; 5] for
each dimension. Different instances of the same function
can be produced by rotating and shifting each function.

Each algorithm was tested for 15 ftrials on different
instances of each function for different dimensions [2, 3,
5, 10, 20, 40].

Algorithm and Experiment Parameter Settings

For fair comparison between the different algorithms, the
maximum number of function evaluations for the
different algorithms was set to D X 10*, where D is the
dimensionality of the problem. The algorithms were
benchmarked using the BBOB2009 settings, i.e. the
algorithms were run on the 24 benchmark functions, 5
instances each, 3 trials per instance.

No specific parameter tuning has been done during the
experiments. The settings were identical for all functions
such that the crafting effort is zero (Hansen, et al., 2010).
The control parameters of algorithms within the simple
algorithm selector are the same as that of the individual
algorithms. The values of the control parameters for the
individual algorithms were set as defined in research
papers that benchmarked these algorithms using the
COCO framework (Auger, 2009; Auger & Hansen, 2009;
Posik, 2009). To avoid the impact of the implementation
details on the evaluation process, all algorithms have
been implemented by the authors and the comparison was
done based on results of the implemented algorithms, not
on the archived data of the COCO framework. The
implementation process was done to accurately replicate
the algorithms as described in the papers (Auger, 2009;
Auger & Hansen, 2009; Posik, 2009; McKinnon, 1998).

RESULTS AND DISCUSSION

The results of benchmarking the individual algorithms,
as implemented by the authors, were compared with the



archived data on  https://numbbo.github.io/data-
archive/bbob/. The comparison shows a big difference in
the results of the (1+1)-CMA-ES compared with the
archived results on fs. It also shows a significant
difference on f7. For the (1+1)-ES with one-fifth rule, the
comparison shows that there is a significant difference in
the performances on fs, fs, fo, fio and f;; for the different
dimensions. The comparison also shows a significant
difference in the results of the STEP algorithm, on fs, fs,
fo, fi0, fis, f21, and f5, for small dimensions (i.e. d=[2, 3,
5])- In most cases, the archived results are better than the
results of the conducted experiments. The comparison
results are not shown in this paper due to limitation on
the number of pages.

The results of the experiments that compares the simple
algorithm selector with individual algorithms on the test
functions for different dimensions are shown in Figures
1-6. The post-processing tools of the COCO platform
were used to generate these plots. In these plots, the best
algorithm is the algorithm, which is able to solve the
highest fraction of test functions for different target
values. The best 2009 line shown in the figures
corresponds to the algorithms from BBOB-2009 with the
best expected run time for each of the targets considered.
Whereas, the Selector, CMA, OneFifth, Simplex and
LSStep lines correspond to the algorithms the simple
algorithm selector, (1+1)-CMA-ES, (1+1)-ES with fifth
rule, the Nelder-Mead and the line search STEP
algorithms respectively.

The results show that in general the simple selector
algorithm performs better than or at least as good as the
best individual algorithm of the algorithms portfolio. The
performance in terms of the fraction of function-target
pairs of the simple algorithm selector that is better than
the individual algorithms for the dimensions of 2, 5, 10,
20 and 40 as shown in Figures 1, 3, 4, 5 and 6. However,
for three-dimensional test functions, the Selector and
CMA show similar performance as depicted in Figure 2.
For larger dimensions as illustrated in Figures 3-6, the
difference in the performances between the simple
algorithm selector and other algorithms becomes more
significant.

The simple algorithm selector has solved the functions fj,
£, £3, i, f5, fs, fo, 10, f12, and fi4. It was able to reach a
target of 108 for all dimensions and in all the experiments
for these test functions. As in any learning mechanisms,
an additional learning cost was expected, which can
affect its expected run-time to reach different targets.
However, the algorithm selector shows a performance,
which is better than that of the best 2009 algorithm on f;
as shown in Figure 7. It was also able to locate the global
optimum of f; in 15 experiments compared only 6
experiments out of 15 for the best 2009 algorithm.
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Figure 1: Empirical cumulative distribution of expected
run time (ERT) over dimension for 51 targets in 1088
for all functions in 2-D.
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Figure 2: Empirical cumulative distribution of ERT over
dimension for all functions in 3-D.

The results show that the simple algorithm selector is
able to reach a target of 10 for the different test
functions and for the tested dimensions, more than any of
the individual algorithms. Table 4 compares the success
rate of the different algorithms for reaching this target for
different dimensions. The table clearly shows the
superiority of the simple selector over the individual
algorithms on all test functions for different dimensions.
The success rate is calculated as the ratio of the number
of experiments that have reached the target of 10~ to the
total number of conducted experiments for a specific
dimension on all test functions.

Table 4: The success rate of the algorithms in finding
the ultimate precision of 1078 in the 24 function for
different dimensions.

Dimension (D)

Algorithm - —— 3 5 10 20 40
Selector 089 073 062 059 054 049
CMA 077 063 053 046 042 040
Simplex 065 058 048 037 025 007
OneFifth 053 033 021 015 014 009
LSStep 023 021 021 020 019 021
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In Table 5, the success rate of the different algorithms in
reaching the precision of 10® for different function
groups and for all dimensions is shown. The table shows
that the simple algorithm selector has a success rate of
100% on the separable functions, i.e. fi-f5 for all
dimensions. It also demonstrates that the simple selector
has a success rate better than the success rate of the
individual algorithms on the unimodal functions with
moderate conditioning, i.e. fs—fo, and the multimodal
functions, i.e. fis—fjo. However, the (1+1)-CMA-ES
algorithm has a slightly better success rate than the

simple algorithm selector on the unimodal ill-conditioned
functions, i.e. fio—f14, and the multimodal functions with
weak structure, i.e. f0—f4. The performance on the group
of multimodal functions with weak structure can be
explained with the shape of the fitness landscapes of this
group. They do not enable the algorithm selector to
benefit from utilising previous experience for deciding
on the best algorithm for the current state. For the
unimodal ill conditioned functions, selecting the (1+1)-
ES with one fifth rule or the LSStep, which have a
success rate of approximately 0, can lead to waste a high
fraction of the search resources.

Table 5: The success rate of the algorithms in finding
the ultimate precision of 1078 for different function

105

groups.
. Function group
Algorithm
s fi-fs fefo  fofu  fifo  Dobs
Selector 1.00 0.78 0.92 0.13 041
CMA 0.53 0.70 0.94 0.08 044
Simplex 0.56 0.50 0.59 0.03 0.35
OneFifth 0.39 0.31 0.00 0.10 041
LSStep 0.97 0.00 0.01 0.01 0.01
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Figure 6: Empirical cumulative distribution of ERT over

dimension for all functions in 40-D.
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CONCLUSION AND FUTURE WORK

A simple algorithm selector that differentiate between the
performances on a set of four search algorithms is
proposed. A portfolio, which unifies single point and
multi-point search algorithms to enable utilising them
within an algorithm selector, is constructed. A simple
discrimination method is used to decide on a suitable
search algorithm based on the search experience. The
simple algorithm selector outperforms the stand-alone
search algorithms on the noise-free BBOB-2009 test
suite. It was able to solve f),f5,13,f4.15,15,fo,f10,f12, and fi4
to the ultimate precision of 10 for dimensions of2, 3, 5,
10, 20 and 40.

The next step in this research is to investigate
reinforcement learning techniques, such as g-learning, to
decide on the right algorithm based on the accumulated
search experience
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