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ABSTRACT
Quality of life (QoL) is one of the major issues for cancer patients.
With the advent of medical databases containing large amounts of
relevant QoL information it becomes possible to train predictive
QoL models by machine learning (ML) techniques. However, the
training of predictive QoL models poses several challenges mostly
due to data privacy concerns and missing values in patient data. In
this paper, we analyze several classification and regression MLmod-
els predicting QoL indicators for breast and prostate cancer patients.
Two different approaches are employed for imputing missing val-
ues. The examined ML models are trained on datasets formed from
two databases containing a large number of anonymized medical
records of cancer patients from Sweden. Two learning scenarios
are considered: centralized and federated learning. In the central-
ized learning scenario all patient data coming from different data
sources is collected at a central location prior to model training.
On the other hand, federated learning enables collective training
of machine learning models without data sharing. The results of
our experimental evaluation show that the predictive power of
federated models is comparable to that of centrally trained mod-
els for short-term QoL predictions, whereas for long-term periods
centralized models provide more accurate QoL predictions.
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1 INTRODUCTION
Nowadays people of all ages suffer from different chronic diseases.
The one of important trends in medical domains is to find out ad-
equate services and support for such patients. Information and
Communication Technologies offers powerful tools, devices and
services for collection of wide range of patient’s data: digital health
records, wearable devices, dashboards, unobtrusive sensors and
other types of smart devices. Using advanced and effective tech-
niques of Artificial intelligence (AI) and Machine learning (ML)
[13] such data are processed and can be used to improve patient’s
health status and different quality of life (QoL) aspects [12, 14].

Predictive analytics in medicine and healthcare plays essential
role and recently is more concentrated on obtaining personalized in-
terventions, treatment and improvement of QoL issues. QoL issues
depend on type of disease and patient’s status (beginning disease
phase, after surgery, during treatment, follow-ups, etc.) and in this
paper we will concentrate on QoL issues for breast and prostate
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cancer, like: Depression, Anxiety, Influence of working environ-
ment, Sleep quality, Influence on physical activities, Fatigue, etc.
General approach for assessment of patient’s QoL issues is based on
results of different questionnaires. Patient Reported Outcome Mea-
sures (PROMs) and Patient Reported Experience Measures (PREMs)
are widely used high-quality questionnaires for checking patients’
perceptions about their health and about experiences after a treat-
ment/intervention.

Research results presented in the paper are achieved within
ASCAPE project: Artificial intelligence supporting cancer patients
across Europe (https://ascape-project.eu/) where two themost preva-
lent types of cancer are considered: breast and prostate cancer. One
of the main purposes of the project is to employ powerful AI/ML
mechanisms to support cancer patients’ health status and QoL.

Within ASCAPE different validated questionnaires will be used
to capture the particular QoL issues depending on type of cancer.
Such questionnaires are good instruments to minimize the risk for
measurement bias, and to enable the better ASCAPE ability for
suitable predictions and interventions. Clinical ASCAPE partners
identified 15 QoL issues for breast and 12 for prostate cancer that
will be predicted through AI-based models.

To the best of our knowledge ASCAPE is a unique research
project that prospectively investigate an AI-based approach, to-
wards a personalised follow-up strategy for cancer patients focus-
ing on their QoL issues. The aim of the project is to offer substantial
benefits for after-treatment health-related QoL improvements.

Importance of applying adequate approaches to properly process
huge amounts of sensitive medical data is evident. Two approaches
to train predictive models are prevalent: centralized and distributed.
In the centralized approach patients’ data collected from different
sources are stored locally in clinics and model training is performed
locally as well. However, recently popular decentralized ML tech-
nique is Federated learning (FL) which enables the quality use and
learning from decentralized data. Patients’ data collected by clinics
could be adequately processed by applying FL approach as it enables
the training of shared global models with a central server, while
keeping all the sensitive data in local. The primary purpose of FL in
ASCAPE is to enable democratized access to ML models promoting
patient QoL without revealing private or sensitive patient data.

Presented experimental results are based on already existing ret-
rospective datasets of an ASCAPE clinical partner. The aim of con-
ducted experiments was to identify appropriate MLmodel for breast
and prostate cancer patients. However, numerous ML techniques
which are utilized during project showed to be very promising and
we will continue our research activities on prospectively collected
data expecting accurate and reliable behavior of developed models.

The rest of paper is organized as follows. The second Section is
devoted to related work. The central, third Section, is focused on
application of ML techniques for predictive QoL models. Section
four is devoted to the description of experimental datasets. Experi-
mental results are discussed in Section five. The last section brings
concluding remarks.

2 RELATEDWORK
The tracking and monitoring of QoL parameters has attracted many
research attention recently. This has a particular importance in

chronic diseases for the prevention and early detection of symp-
toms and signs. The proper monitoring should provide the positive
effect on patient’s quality of life, economic impact and resource
management. As expected, substantial amounts of data on quality
of life are combined into clinical trials using a variety of instru-
ments [15].

Regular assessment of QoL parameters of chronic patients has
an impact on physician-patient communication and result in ben-
efits for some patients, who had a better QoL [17]. Furthermore,
continuous collection of medical attributes and growth of the data-
base could allow the selection of proper medical variables and the
selection of adequate models for a more accurate prediction of
QoL [15].

Several recent studies emphasized the importance of applying AI
and data mining (DM) techniques in successful prediction of QoL
issues. For example, in [16] authors used QoL issues to monitor
patients’ clinical condition and health status for the patients with
ultra-rare autosomal recessive disease Alkaptonuria. One of the
main problems in the follow-up of patients with ultra rare diseases is
the lack of a standardized methodology to assess disease severity or
response to treatment and QoL scores could be a successful way to
monitor such patients. Also, different machine learning approaches
(Linear Regression, Neural networks and k-nearest-neighbor) were
implemented with the aim to perform a prediction of QoL scores
based on clinical data.

The authors in [12] present the basis of the DIAL system which
represents an early warning system for the early detection of a
deteriorating QOL score in the hemodialysis population using ma-
chine learning algorithms. Here two models (classification tree and
Naïve Bayes) were generated to predict an increase or decrease of
5% in a patient’s QoL score over one month. The classification tree
was selected as the better model with an area under curve (AUC)
of 83.3% and accuracy of 81.9%. The authors concluded that their
system DIAL, if implemented on a larger scale, is expected to help
patients in terms of ensuring a better QoL and a reduction in the
financial burden in the long term.

The predictor of quality of life called the Better Life Index (BLI)
was used for QoL assessment in [6]. It is based on the measurement
of different aspects of human life in the whole population: environ-
ment, jobs, health, civic engagement, governance, education, access
to services, housing, community, and income. The paper presents a
supervised machine-learning analytical model that predicts the life
satisfaction score using several DM models like: decision tree, elas-
tic net, neural network, random forest, support vector machine, etc.
The results showed that the ensemble model based on the stacked
generalization framework is a significantly better predictor of the
life satisfaction of a nation, compared to base models.

QoL are studied in different cancer related diseases since they
present a common chronic conditions nowadays. For example, in [3]
authors presented the project which tries to design a new patient
reported outcome measure to assess QoL issues for patients with
locally recurrent rectal cancer. The authors identified the fact that it
is very tedious to administer simultaneously several questionnaires
required for QoL assessment especially in patients with major limi-
tations caused by the disease. So it is essential to find alternatives
which largely replace questionnaires, and their approach involves
use of biometric devices with the help of DM techniques.
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Some successful applications of QoL prediction in cancer dis-
eases also includes: the comparison of the pre and the post treat-
ment quality of life in cervical cancer patients [8], construction of
machine learning and statistical models for prediction of gastro-
urinary symptoms and QoL issues following prostate radiation
treatment [20], and the prediction of 5-year lung cancer survival
on the basis of QoL issues [14].

To the best of our knowledge, this study is the first one which
tries to develop a QoL prediction model for breast and prostate
cancer patients. The study [20] also investigates prostate cancer
patients but focus only on one type of intervention - radiation
treatment. Here we will try to encompass both types of cancer
patients (breast and prostate) with as many as possible common
attributes, with all types of common interventions, and with a set
of relevant QoL attributes.

3 MACHINE LEARNING TECHNIQUES FOR
PREDICTIVE QOL MODELS

The QoL indicator of a cancer patient can be predicted either by a
classification or a regression machine learning model depending on
the type of the indicator. In this work we consider two types of QoL
indicators: (1) binary indicators indicating whether the patient will
experience QoL related symptoms after diagnosis (e.g., anxiety and
depression) and (2) numeric indicators indicating overall QoL of the
patient reported by filling an appropriate questionnaire (e.g., the
QoL score of the LISAT-11 questionnaire [10]). Binary classification
models are the most appropriate for the first type of QoL indicators,
while for the second type of QoL indicators predictions can be
obtained by regression models.

For predictive QoL models (as well as for medical predictive
models in general) it is important to distinguish two practical sce-
narios: centralized and decentralized (federated). In the centralized
scenario all anonymized training data coming from different med-
ical organizations is collected to a central place where machine
learning models are trained. However, in majority of cases medical
organizations are not willing to share anonymized patient data, or
it is not even allowed for them to do so according to governmental
regulations and laws. One solution in this case is to apply federated
learning [18] of predictive QoL models in which several edge nodes
collectively train predictive QoL models by exchanging locally up-
dated machine learning models instead of sharing training datasets.
Edge nodes are computational devices owned by medical organiza-
tions and deployed within their computational infrastructure, so
training datasets never leave the boundaries of data owners.

3.1 Centralized QoL Predictive Models
The following machine learning algorithms are examined for train-
ing centralized binary classification models predicting binary QoL
indicators: NB (Naive Bayes), KNN (𝐾 nearest neighbors), SVM
(support vector machines), DT (decision trees) and RF (random
forests).

NB is a probabilistic classification algorithm learning a predictive
model giving the most probable class (positive or negative in the
case of binary classification) for a given data instance (in our case
a patient described by a set of features). Class probabilities are
computed using conditional probability estimates learned from a

training dataset under the assumption that features describing data
instances are conditionally independent.

KNN is a lazy learning algorithm. The class for a given data
instance is predicted by majority voting from the classes of the 𝐾
closest data instances belonging the training dataset according to
some distance functions (e.g., the Euclidean or Manhattan distance).

SVM classifiers are based on the idea of using linear models
to identify non-linear boundaries of classes. This is achieved by
transforming data instances into a new higher dimensional space
using a non-linear mapping. Quadratic programming algorithms
are then employed in the higher dimensional space to determine the
maximum margin hyperplane separating instances from different
classes.

Decision-tree based classifiers make predictions according to
decision trees constructed from the training dataset by a recursive
divide-and-conquer algorithm utilizing some information theoretic
measure (e.g, information gain or the Gini impurity). This means
that decision trees are formed in the divisive manner from the
root of the tree to its leafs. The underlying information theoretic
measure is used to find and select the most discriminative feature
to form a corresponding node in the tree and split training data to
recursively form its subtrees.

A random forest is an ensemble of decision trees learned from
bootstrapped samples of the training dataset. The RF algorithm
employs a feature bagging procedure to determine a random subset
of features for learning individual decision trees. The class for a
given input data instance is then determined as the most frequent
class predicted considering all decision trees in the ensemble.

For predicting numeric QoL indicators we examine the following
algorithms for learning regression models: LINEAR (linear regres-
sion), RIDGE (ridge regression), LASSO (lasso regression), ELAS-
TICN (elastic net regression), KRIDGE (kernel ridge regression),
SVM (regression by support vector machines), RF (regression by
random forests), and KNN (K-nearest neighbours regression).

The linear regression algorithms determine coefficients of a lin-
ear model by minimizing the residual sum of squares (RSS) be-
tween real values of the target variable and predictions derived
from the model. Ridge, Lasso and Elastic Net find linear models by
minimizing RSS with incorporated regularization penalties: Ridge
incorporates the L2 regularization penalty, Lasso is based on the
L1 regularization penalty, while Elastic Net uses both previously
mentioned penalties. Kernel Ridge regression performs Ridge re-
gression in a space obtained by a non-linear mapping of the training
dataset. SVM, RF and KNN are adaptations of the corresponding
classification algorithms for regression tasks.

In our experiments we have used the Scikit-learn machine learn-
ing library [11] to develop a set of Python modules for training
centralized QoL predictive models.

3.2 Federated QoL Predictive Models
A federated model is a machine learning model collectively trained
by several edge nodes running federated learning clients. Each fed-
erated learning client has its own dataset for training the model and
those local training datasets are never exchanged among federated
learning clients participating in federated learning. The federated
learning process is coordinated by a federated learning server. The



MEDES ’21, November 1–3, 2021, Virtual Event, Tunisia M. Savić, et al.

main purpose of the federated learning server is to enable the
exchange of locally updated federated models among federated
learning clients.

Two basic federated learning schemas are incremental and con-
current. Let 𝐶1, 𝐶2, .., 𝐶𝑘 denote 𝑘 federated learning clients each
having its own training dataset 𝐷𝑖 (𝑖 ∈ [1 .. 𝑘]). In the incremental
federated learning scheme federated learning clients incrementally
build a machine learning model from the first to the last client.
This means that 𝐶1 creates𝑀 on 𝐷1 and sends it to the federated
learning server. Then, 𝐶2 retrieves𝑀 from the federated learning
server, updates it on 𝐷2 and returns the updated model back to the
server. Each next federated learning client does exactly the same
until the last client 𝐶𝑘 .

In the concurrent federated learning scheme 𝑀 is collectively
trained in parallel. In the first step each federated learning client
𝐶𝑖 creates its own model𝑀𝑖 on 𝐷𝑖 . All models are then sent to the
federated learning server which averages 𝑀1 to 𝑀𝑘 into a single
model𝑀 . Once all edge nodes have submitted their local models,
the global model is updated using the Federated Averaging [5] ap-
proach. The federated learning server then sends𝑀 to all federated
learning clients which update 𝑀 on their local datasets and the
updated models are returned back to the federated learning server
for the second averaging. The previous operation is repeated for
an arbitrary number of learning rounds and the averaged model
after the last learning round is the final federated model.

Neural networks are the most natural model choice for federated
learning for the following two reasons: (1) neural networks can
be incrementally updated, and (2) neural networks can be easily
averaged by averaging edge weights and biases. Since we deal
with two types of predictive problems we also have two types of
federated neural networks:

(1) Federated neural networks for regression. The last layer of
such neural networks contains exactly one node activated
by the linear function. In our work we use the mean squared
error (MSE) as the loss function when training regression
neural networks.

(2) Federated neural networks for binary classification. In this
case, one node contained in the last layer is activated by the
sigmoid function. Output values higher than 0.5 indicate the
positive class, while values lower than 0.5 correspond to the
negative class. The binary cross-entropy function is used
at the loss function when optimizing parameters of binary
classification neural networks.

Nodes in hidden layers of both types of federated neural networks
are activated by the ReLU activation function. We also consider
two mechanisms to prevent overfitting: dropout and regularization
strategies (the kernel, bias and activation regularization).

To compare federated QoL models to centralized QoL models
we have developed a federated learning simulator based on the
Tensorflow machine learning library [1]. The realized simulator
supports both incremental and concurrent federated learning mode
for an arbitrary number of simulated edge nodes (federated learning
clients). The architecture of a federated neural network can be spec-
ified by providing its type (regression or binary classification), the
number of hidden layers and the number of nodes per hidden layer.
The user can also specify the number of epoch (learning rounds)

and the batch size (the number of training instances propagated
through the network when updating model parameters). At the
beginning, the simulator divides training data (training folds when
the 𝑘-fold cross-validation is applied to evaluate models) into 𝑝
stratified parts, where 𝑝 is the number of simulated edge nodes.
Then, simulated edge nodes use their part of training data when
creating or updating Tensorflow neural networks by the Adam
optimization algorithm [7]. In the case of concurrent federated
learning, the averaging of Tensorflow neural networks formed by
simulated edge nodes is performed after each epoch. More pre-
cisely, we utilized the callback mechanism provided by Tensorflow
to implement the federated client-server communication. A socket
connection is open between an edge node and the coordinating
server once a client wishes to update a global model, and at key
training steps such as the end of each epoch, the edge node sends
it’s model updates to the server.

3.3 Missing Value Inference (MVI)
Datasets for training machine learning models often contain miss-
ing values. This is also the case with the experimental datasets used
in this work. To train machine learning models it is necessary to
infer and fill missing values of predictor features or, alternatively, to
remove data instances containing missing values. For the missing
value inference (MVI) we use two methods provided by the Scikit-
learn library: (1) simple MVI and (2) iterative MVI. The simple MVI
fills missing values using a simple approach: all missing values for
a feature 𝑓 are filled with the mean of existing values in 𝑓 .

The iterative MVI is based on the idea to train a regression model
for each feature containingmissing values [2]. The regressionmodel
for 𝑓 is trained based on values of other predictor features. Then,
missing values for 𝑓 are filled based on predictions of its regres-
sion model. After obtaining predictions for all missing values, the
iterative MVI repeats the whole procedure for predefined number
of times in a round-robin fashion (i.e., predicted missing values of
𝑓 together with known values are then used to retrain the regres-
sion model for other features also containing missing values). The
predictions of the final round are then used to fill missing values.

3.4 Model Evaluation
To estimate errors of the examined regression models we use the
mean absolute error (MAE):

𝑀𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |, (1)

where 𝑛 is the number of data instances in a test dataset (or a test
fold), 𝑦𝑖 the real value of the target variable for 𝑖-th instance and 𝑦𝑖
is the predicted value of the target value according to a regression
model.

In our experimental evaluation of QoL regression-based predic-
tive models, MAE estimates of the examined regression models are
also compared to MAE estimates of the so-called DUMMY regres-
sion algorithm. The DUMMY regression algorithm always predict
the same value for a target feature: the mean of the target feature
from a training dataset (or training folds).

Binary classifiers predicting QoL issues are evaluated using ac-
curacy, precision, recall and 𝐹1 scores. The accuracy of a binary
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classifier is equal to the number of correctly classified instances
divided by the total number of instances in a test dataset (or a test
fold). Precision and recall metrics are defined per class. The preci-
sion for a class 𝑐 (𝑐 is the positive or negative class) is the number
of instances correctly classified to 𝑐 divided by the total number of
instances classified to 𝑐 . On the other hand, the recall for 𝑐 is the
number of instances correctly classified to 𝑐 divided by the total
number of instances that belong to 𝑐 . Precision and recall score
for the whole binary classifier are obtained by averaging precision
and recall scores per class. Since precision and recall measure two
different aspects of classifier’s performance it is useful to aggregate
them into a single score. The usual way to aggregate precision and
recall is to compute the 𝐹1 score is which is the harmonic mean of
precision (𝑃 ) and recall (𝑅):

𝐹1 =
2 · 𝑃 · 𝑅
𝑃 + 𝑅 . (2)

All above-mentioned model evaluation metrics are estimated
by the 10-fold cross validation procedure. In the 10-fold cross-
validation, an input dataset is split into 10 folds. Then, 10 iterations
of training and evaluation are performed. In the 𝑖-th iteration, 𝑖-th
fold is used to compute evaluation metrics of models trained on the
remaining folds. In this way we obtain 10 estimates of evaluation
metrics that are then averaged into final estimates.

The effects of missing value inference to the performance of
predictive QoL models is investigated by comparing models trained
on datasets to which the simple MVI is applied and models trained
on datasets obtained after the iterative MVI.

4 EXPERIMENTAL DATASETS
Previously described machine learning models are evaluated on
datasets formed from two databases: ORB and BcBase. BcBase is
a population-based research database containing data about early
breast cancer patients from three healthcare regions in Sweden
(accounting for nearly 60% of the total population) in terms of
patient and tumor characteristics, treatment strategies and pre-
scribed medications. The database does not include QoL indica-
tors captured through questionnaires, but from prescribed medi-
cations it is possible to derive the presence of certain QoL issues.
From BcBase we formed 4 datasets for training and evaluating
binary classifiers deciding whether a patient will suffer from anxi-
ety (BcBase-Anxiety), depression (BcBase-Depression), insomnia
(BcBase-Insomnia) and pain (BcBase-Pain) after breast cancer treat-
ment. All BcBase datasets contain 18988 data instances (patients)
described by 97 predictor features.

ORB is a database containing data about patients with localised
prostate cancer treated with radiotherapy in the Örebro healthcare
region. It includes data on patient and tumour characteristics, treat-
ment approaches, dosimetric parameters regarding radiotherapy,
side effects based on direct questions or validated questionnaires
(IPSS, IIEF-5) and QoL issues based on a validated questionnaire
(LISAT-11). ORB contains 2466 health records with follow-up exam-
inations repeated at six months intervals and LISAT-11 QoL scores
at the time of the diagnosis and three different times relative to
the date of diagnosis at months 36, 60 and 120. From ORB data we
created six datasets with the naming scheme ORB-𝑛-𝑚 for training
regression models predicting the LISAT-11 QoL score at month𝑚

considering all patient data collected up to month 𝑛. The created
datasets are: ORB-30-36, ORB-30-60, ORB-30-120, ORB-54-60, ORB-
54-120 and ORB-108-120. For example, ORB-30-36 is used to train
regression models predicting the LISAT-11 QoL score in month 36
considering data collected up to month 30 as predictor variables.
The number of instances (patients) in ORB datasets ranges from
1138 in ORB-30-36 to 610 in ORB-108-120, while the number of
predictor variables ranges from 96 in ORB-30-36 to 158 in ORB-108-
120 (the number of patients decreases due to recoveries, dropouts
and deaths, while the number of predictors increases due to longer
time intervals. Also some patients got their diagnosis less than 10
years ago. They haven’t had their follow-up yet).

5 RESULTS AND DISCUSSION
In this section we first present the evaluation of centralized ma-
chine learning models trained on experimental datasets described
in previous section. The influence of missing value inference to the
performance of those models is then discussed. Finally, we examine
federated QoL machine learning models and compare them to their
centralized counterparts.

5.1 Evaluation of Centralized QoL Models
The performance of binary classification models trained on BcBase
datasets obtained by the 10-fold cross-validation are summarized
in Tables 1, 2, 3, and 4. All classifiers were trained and evaluated
on BcBase datasets obtained after missing value inference by the
iterative MVI method.

Table 1: Evaluation of binary classification models on
BcBase-Anxiety

Classifier Accuracy Precision Recall 𝐹1

RF 0.673 0.484 0.535 0.514
SVM 0.698 0.411 0.349 0.5
NB 0.629 0.552 0.553 0.552
KNN 0.682 0.458 0.529 0.507
DT 0.583 0.511 0.511 0.511

Table 2: Evaluation of binary classification models on
BcBase-Depression

Classifier Accuracy Precision Recall 𝐹1

RF 0.677 0.473 0.524 0.509
SVM 0.702 0.413 0.351 0.5
NB 0.566 0.534 0.543 0.551
KNN 0.688 0.462 0.536 0.509
DT 0.589 0.515 0.515 0.515

The SVM classifier exhibits the highest accuracy on three out
of four BcBase datasets (BcBase-Anxiety, BcBase-Depression and
BcBase-Pain). However, precision and recall scores of SVM on those
three BcBase datasets are significantly lower compared to other
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Table 3: Evaluation of binary classification models on
BcBase-Insomnia

Classifier Accuracy Precision Recall 𝐹1

RF 0.538 0.526 0.535 0.532
SVM 0.541 0.533 0.539 0.537
NB 0.555 0.554 0.555 0.554
KNN 0.521 0.502 0.516 0.514
DT 0.516 0.515 0.515 0.515

Table 4: Evaluation of binary classification models on
BcBase-Pain

Classifier Accuracy Precision Recall 𝐹1

RF 0.698 0.486 0.554 0.518
SVM 0.714 0.417 0.357 0.5
NB 0.53 0.517 0.553 0.564
KNN 0.699 0.457 0.528 0.506
DT 0.604 0.522 0.522 0.522

classifiers. A more detailed examination of precision and recall per
class revealed that SVM has zero precision and zero recall for the
positive class (the presence of anxiety, depression and pain after
treatment) and that it dominantly predicts the negative class (no
negative QoL related symptoms). The highest accuracy of SVM
on those three dataset is a consequence of its bias towards the
negative class on class imbalanced datasets in which approximately
70% of the patients belong to the negative class and 30% to the
positive class. Therefore, it can be concluded that accuracy is not
an appropriate measure for comparing binary classification models
trained on BcBase datasets. 𝐹1 score is more adequate measure since
it takes into account precision and recall of both classes. It can be
observed that SVM exhibits the lowest 𝐹1 score on those datasets
where it has the highest accuracy. KNN has the lowest 𝐹1 score on
BcBase-Insomnia and the second lowest on other BcBase datasets.
Thus, it can be concluded that those two methods are the worst
performing binary classification models for BcBase datasets.

The largest 𝐹1 score on three BcBase datasets (anxiety, depression
and insomnia) is achieved by the NB classifier. The best model for
the fourth dataset (pain) is DT, but its 𝐹1 score is very close to the
𝐹1 score of NB. Consequently, it can be concluded that NB is the
best choice to train centralized QoL predictive models for BcBase
datasets.

The results of the evaluation of centrally trained regression mod-
els on the ORB datasets are shown in Table 5 including the DUMMY
regressor as the baseline. The best model (the lowest MAE) for ORB-
30-36 is RF. For the rest of ORB datasets, the best performing model
is LASSO. KNN is the worst performing regression algorithm on
all ORB datasets: predictions made by this model are even more
erroneous than predictions made by DUMMY. Excluding KNN, all
others considered models exhibit smaller prediction errors com-
pared to DUMMY except in one case: DUMMY is better than linear

regression on ORB-30-120. The prediction errors of the best per-
forming model are in the range [4.84, 6.47], which is an acceptable
level of prediction errors taking into account that the target variable
(the LISAT QoL index) is in the range [11, 66].

The improvement of LASSO (the best performing regression
model) over DUMMY are significant for short term QoL predictions
(30-36, 54-60, 108-120) when the reduction of the MAE score ranges
from 20% to 30%. For medium term QoL predictions (30-60, 54-
120) the improvements are between 10% and 15%. As expected,
the lowest improvement is for long term QoL predictions on ORB-
30-120 where the reduction of MAE scores is slightly higher than
5%.

Table 5: MAE scores of regression models on ORB datasets
(best value per column is bolded)

Regressor 30-36 30-60 30-120 54-60 54-120 108-120

DUMMY 6.541 6.89 6.909 6.89 6.909 6.909
LINEAR 5.311 6.129 7.003 5.238 6.899 6.524
RIDGE 5.1 5.925 6.652 5.07 6.356 5.977
LASSO 5.089 5.886 6.478 4.84 6.18 5.437
ELASTICN 5.126 5.913 6.504 4.859 6.216 5.448
KRIDGE 5.147 5.958 6.75 5.115 6.492 6.155
SVM 6.519 6.773 6.871 6.772 6.859 6.875
RF 5.051 6.015 6.685 5.009 6.357 5.635
KNN 6.72 6.968 7.133 6.906 7.128 7.033

5.2 Influence of Missing Value Inference
For the best classification model (NB) and the best regression model
(LASSO) we have examined the influence of two missing value in-
ference methods (simple and iterative) to the models’ performance.
Figure 1 shows 𝐹1 scored of NB for iterative and simple MVI meth-
ods. It can be seen that differences in 𝐹1 scores are almost absent:
the largest difference is equal to 0.004, which is less than 0.8% of the
better score. Similar results are obtained for MAE scores of LASSO
(Figure 2): the largest difference in MAE scores is equal to 0.12 (2.5%
of the better score). Consequently, it can be concluded that the
choice of the MVI method does not make a significant influence to
the performance of examined models and that the simple MVI can
be as equally effective as the iterative MVI.

5.3 Evaluation of Federated QoL Models
In experiments with simulated federated models, we have used
different neural network architectures for BcBase and ORB datasets.
A preliminary investigation, in which we have varied the number
of hidden neural network layers between 1 and 10 and the batch
size in the set {16, 64, 128, 256, 512}, showed that shallow neural
networks (a small number of hidden layers) trained with a large
batch size aremore suitable for BcBase datasets, while deeper neural
networks (a larger number of hidden layers) trained with a small
batch size result with better predictive models for ORB datasets.
We have simulated from 2 to 4 edge nodes training models in both
incremental and concurrent federated learning mode. Performance
metrics for simulated federated models were obtained in the same
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Figure 1: 𝐹1 scores of NB on BC-Base datasets for two MVI
methods (iterative and simple)

Figure 2: MAE scores of LASSO onORB datasets for twoMVI
methods (iterative and simple)

way as for centrally-trained predictive models (by the 10-fold cross
validation procedure).

The architecture of neural networks for federated binary classi-
fication models on the BcBase datasets consists of 4 hidden layers
each having 20 nodes. Federated neural networks were trained
in 200 epochs per simulated edge node with batch size equal to
512. The comparison of 𝐹1 scores of centrally trained and simu-
lated federated binary classification models is presented in Table 6.
As baselines we use a centrally trained TensorFlow-based neural
network (TFNN), the best centrally trained non-neural network
classifier (Best C) and the worst centrally trained non-neural net-
work classifier (Worst C). INC-𝑘 and CON-𝑘 denote federated neural
network binary classification models trained in the incremental
(INC) and concurrent (CON) learning mode for 𝑘 simulated edge
nodes.

For BcBase-Anxiety, Depression and Insomnia datasets, we have
observed that federated models are significantly better than the
worst performing local model (SVM and KNN depending on the
dataset). 𝐹1 scores of federated models are close to 𝐹1 scores of NB
which is the best performing centrally trained model. Federated
models trained on BcBase-Pain have higher 𝐹1 scores compared to
the best performing centrally trained model on that dataset (DT). It
is also important to emphasize that there are no significant differ-
ences in 𝐹1 scores of incremental models and concurrent federated
models. Additionally, the performance of federated models does
not tend to significantly drop with the number of simulated edge
nodes.

Table 6: 𝐹1 scores of federated binary classification models
on BcBase datasets.

Anxiety Depression Insomnia Pain

INC-2 0.536 0.512 0.546 0.542
INC-3 0.542 0.507 0.529 0.542
INC-4 0.539 0.515 0.538 0.532
CON-2 0.522 0.504 0.542 0.548
CON-3 0.512 0.519 0.55 0.534
CON-4 0.53 0.509 0.542 0.545

Best C 0.552 0.534 0.554 0.522
Worst C 0.411 0.413 0.502 0.457
TFNN 0.438 0.53 0.54 0.542

For federated regression models trained on the ORB dataset,
we have used neural networks with 10 hidden layers each with
40 neurons. The training was performed in 200 epochs per simu-
lated edge node with the batch size equal to 32. The obtained MAE
scores are summarized in Table 7. For all six datasets, the best local
model (LASSO) has lower prediction errors than simulated feder-
ated models. Large differences between federated models trained
in different federated learning modes are absent. In contrast to
federated models trained on BcBase datasets, here we can observe
a tendency of increasing errors with the number of simulated edge
nodes. Federated models are better than the DUMMY baseline for
ORB-30-36, ORB-30-60, ORB-54-60 and ORB-108-120, but worse
than DUMMY for ORB-30-120 and ORB-54-120. This result implies
that different neural network architectures should be employed for
short term and long term QoL predictions. Therefore, our subse-
quent work will be to examine a wider range of neural network
architectures for federated regression and determine architectures
providing satisfactory results long-term QoL predictions.

Table 7: MAE scores of federated regression models on ORB
datasets.

30-36 30-60 30-120 54-60 54-120 108-120

INC-2 6.012 6.775 7.488 5.931 7.188 6.625
INC-3 6.472 6.751 7.226 5.867 7.169 6.43
INC-4 6.595 7.042 7.463 6.22 7.206 6.484
CON-2 5.881 6.705 7.444 5.904 7.193 6.463
CON-3 6.404 6.826 7.427 5.986 7.098 6.327
CON-4 6.534 6.883 7.538 6.269 7.221 6.652

DUMMY 6.541 6.89 6.909 6.89 6.909 6.909
LASSO 5.089 5.886 6.478 4.84 6.18 5.437
TFNN 5.783 6.572 7.323 5.811 7.206 6.562

6 CONCLUSIONS AND FUTUREWORK
In this paper we have examined several classification and regression
machine learning algorithms for training models predicting binary
and numeric QoL indicators, respectively, for breast and prostate
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cancer patients. The focus of our experimental evaluation was on
two types of predictive models: (1) centrally-trained QoL models
that are relevant either for individual data owners or for multiple
data owners when it is allowed to collect training data in a central
location, and (2) federated QoL models trained in distributed envi-
ronments encompassing multiple data owners without data sharing.
We also examined the influence on two different MVI algorithms
on the performance of examined predictive models.

Our experimental evaluation on real datasets showed that nu-
meric QoL indicators can be accurately predicted by both centrally-
trained and federatedmodels for short term future periods. Centrally-
trained regression models provide also accurate long term pre-
dictions. On the other hand, federated regression models exhibit
prediction errors close to the dummy regression model indicating
that different neural network architectures should be employed for
learning regression-based federated models providing short term
and long term QoL predictions.

For classification-based models predicting binary QoL indica-
tor it was observed that centrally-trained and federated models
have comparable prediction performances. However, for both types
of model we noticed that they achieve relatively low precision
and recall scores for the minority class due to imbalanced train-
ing datasets indicating that appropriate data sampling techniques
should be examined to form more class-balanced training datasets
prior to model training. Our analysis of simple and iterative MVI
algorithms showed that the choice of the MVI does not make a
significant influence to the performance of examined models.

In our future work, we will also examine various feature selec-
tion techniques to identify the most relevant features for making
QoL predictions and examine the performance of predictive QoL
models trained on selected features. Having in mind that predictive
QoL models should be robust against adversarial inference requests,
we will also examine the influence of differential privacy mecha-
nisms [4] to the accuracy of predictive QoL models. Furthermore,
it would be interesting to examine federated learning approaches
which are not based on neural networks like: decision trees [9] or
logistic regression [19].
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