
Detecting SQL-Injection and Cross-Site Scripting
Attacks Using Case-Based Reasoning and SEASALT
Jakob Michael Schoenborn1,2,3, Klaus-Dieter Althoff1,2

1University of Hildesheim, Germany
2German Research Center for Artificial Intelligence (DFKI), Germany
3Exploit Labs GmbH, Germany

Abstract
Since the internet offers a rising amount of services and reachable devices, the amount of criminal ac-
tivities rises as well. Protective measures such as firewalls and intrusion detection systems are being
actively developed. We accompany this development by offering a case-based reasoning approach to
detect similar attacks based on previous attacks (cases), starting with cross-site scripting (XSS) and SQL-
injection (SQLi). With an instantiation of the SEASALT framework, the foundation for expandability
towards further attack vectors, such as authentication testing, can easily be established by adding ad-
ditional topic agents. Additionally, we propose to distinguish between two different views on network
traffic: the request itself, and the traffic overall. The latter enables us to detect timed attacks, e. g, au-
thentication testing by brute-force guessing login credentials, and to identify clients with a suspicious
large amount of generated traffic. This paper focuses on the request itself to identify XSS and SQLi
attacks - two of the most commonly used attack vectors in the last decade according to the open web
application security project (OWASP). As we store cases containing these attacks in our casebases, we
are able to detect similar cases. Depending on the use-case, we identified up to 16 relevant attributes,
predominantly text attributes. However, the similarity assessment needs improvement to reduce the
rate of false-positives.

Keywords
Case-Based Reasoning, Network Security, SEASALT, Cross-Site Scripting, SQL-Injection

1. Introduction

Not only the events of the current and last year but also the growth of the digitalization in
general led to a rapid increase in the usage of online technologies [1, 2]. Visiting a website
is based on a client requesting the source behind the addressed URL (usually a .HTML file).
Additionally, it results in transferring multiple hundreds of packets of the different protocols
in the OSI layer model between the client and the server [3]. Per default, this communication
contains seemingly harmless information about the participants, such as the server information,
e. g., an Apache/2.4.29 (Ubuntu)1 server. However, a potential attacker can make use of this
information to adjust an attack accordingly - increasing the chance of success. As so-called

LWDA’21: Lernen, Wissen, Daten, Analysen September 01–03, 2021, Munich, Germany
" schoenb@uni-hildesheim.de (J. M. Schoenborn)
� 0000-0001-9669-8148 (J. M. Schoenborn)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1Which has known vulnerabilities. Vulnerabilities and their corresponding risk assessment are maintained at
https://www.cvedetails.com/index.php (last validation 08/18/2021)

mailto:schoenb@uni-hildesheim.de
https://orcid.org/0000-0001-9669-8148
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.cvedetails.com/index.php


human blue-teamers are constantly monitoring the network traffic and observing malicious
changes in their to be protected host computers, it is not feasible to manage the sheer amount
of traffic manually. Blue-teamers rely on warnings raised by firewalls and intrusion detection
systems (IDS).

To take a step into the direction of a more efficient network analysis, we propose an instanti-
ation of the “Shared Experience using an Agent based System Architecture LayouT” framework
(SEASALT) [4]. As a brief overview, SEASALT uses one coordination agent who controls 𝑛 topic
agents. Topic agents are specialized on machine learning approaches, knowledge-based systems,
or any other artificial intelligence technology in general. The agents used here are case-based
reasoning (CBR) agents, where each agent maintains the four knowledge containers according
to Richter [5]: vocabulary, casebase, similarity measurements, and adaptation knowledge. Using
this framework provides the benefit of flexible knowledge management and decentralisation, so
that, for example, we can instantiate one agent for cross-site scripting (XSS), one agent for SQL
injections (SQLi), and more for any other attack vectors.

Given an input field such as a search function, the search keyword will be passed to the
database to look for entries matching the search keyword. The SQL search query may look like

SELECT * FROM products WHERE item LIKE 'keyword';

As a result, a list of products matching the given keyword will be printed to the graphical user
interface. The attacker controls the value of keyword (excluding the apostrophes). A SQL
injection allows the attacker to interact with the database of the server by escaping the given
SQL statement, e. g., by commenting the latter part of the SQL statement and inserting own
SQL statements - selecting, updating, deleting, or creating other tables. For example, entering
as keyword

mask' UNION (SELECT username, password FROM users);--

the complete SQL statement reads

SELECT * FROM products WHERE item LIKE 'mask' UNION (SELECT username,
password FROM users);--';→˓

The attacker receives a list of all products matching the keyword mask and all usernames and
passwords from the table users. The idea for XSS attacks is basically the same, but targets for
client-side information, such as authentication tokens or session cookies.

However, this assumes a table named users and the column names username, password
exist. Finding and executing a SQLi often requires a trial & error phase to identify the correct
identifiers. Automatization tools such as sqlmap simplify this process. These products contain
wordlists with known SQLi and automatically try them against the target domain and target
input field. Rule-based systems can use these wordlists and detect any requests containing
words of these wordlists. Since attackers are aware of this, attackers started to create their
own wordlists by slightly changing the contents of the wordlists. This is where a case-based
reasoning approach can support other defensive approaches by comparing the current traffic
with known, similar SQLi. Whenever, for example, the SQLi agent detects an attack, the agent
reports to the coordination agent who not only reports the attack to the user of the system,



but may also initiate further meta investigations to detect other patterns of additional attacks
originated from the same client.

The next sections are structured as followed: Section 2 provides a brief overview on the
current literature regarding network traffic analysis. Afterwards, we present the theoretical
foundation of our system in Section 3 with a main focus on how to fill, use, and maintain the
knowledge containers used in CBR. Consequently, Section 4 presents the resulting prototype,
using myCBR for the CBR interface and other commonly used tools as network traffic data
sources. In Section 5, we present our experiments of the prototype and discuss the results.
Closing this contribution, we remain with conclusions and future work in the last Section 6.

2. Related work

In this section, we briefly present contributions in the IT security domain using CBR to gain an
overview on current approaches and application areas.

Kapetanakis et al. [6] built a profile of a person who tries to intrude into a system by gathering
their traces. The assumption is that cyber criminals are different from normal criminals in their
behaviour and technical characteristics [6]. To evaluate their CBR approach, 87 participants
were asked to attack a target system by shutting down the services running on this computer
while each attack was regarded as an individual case for the CBR system containing at least
15 attributes and the outcomes as evidence for the solution part, classified by forensic experts
[6]. The idea of criminal cyber profiling has been further investigated by Han et al. [7], also
including a CBR approach to categorize traces left by professional advanced persistent threat
groups. As our approach investigates the attack vectors itself, a higher level view on the attacker
per se seems to be unique in the literature. It remains open for further research whether these
could be incorporated to our approach as an additional topic agent.

As we motivated the problems with IDS, there is also work on improving the rule-based
systems behind these IDS. More precisely, Schwartz et al. [8] implemented a CBR system to
improve the rule-based system Snort to overcome its known limitations regarding false-positives
and false-negatives. Another approach for anomaly detection has been provided by Micarelli
and Sansonetti [9], who investigate the interaction between users and network configuration
based on the queries sent to the system. The similarity is assessed by the Earth Mover’s Distance
between the corresponding feature distributions [9].

3. Conceptual model: framework and knowledge containers

Analyzing the network traffic data requires reliable tools to monitor the ongoing network data.
We gather the network data by using Wireshark2 and Burp3. Both aim to capture, filter, and
adjust network traffic and are standard tools to use in the domain, with slightly different foci. For
a more detailed, technical description, we refer to Section 4 and to our prototype demonstrated
at the ICCBR 2021 workshop on CBR demonstrations and showcases [10]. For the conceptual
model, these tools allow us to generate structured text data (.CSV and .XML), containing all

2For more information, see https://www.wireshark.org/ (last validation 08/18/2021) and Section 4
3For more information, see https://portswigger.net/burp (last validation 08/18/2021) and Section 4

https://www.wireshark.org/
https://portswigger.net/burp


important information to automatically generate cases. However, before observing the traffic
and hoping to gain insights, we differentiate two types of traffic to observe - the request per se
and the general traffic patterns:

1.) the request (using Burp to gather)
Requests contain various information about the sender, such as the used browser, the
location, the source IP address and the request itself. After receiving the request, the
server answers with a HTTP response, which contains a header and a body part. This is
important, as the header part may be exploitable in various ways as Kettle [11] shows
- and thus, request and responses need both to be observed. Additionally, certain flags
set in the TCP/IP protocol, such as RST, are possible characteristics for a network scan,
which may indicate the preparation of an incoming attack.

2.) traffic patterns (using Wireshark to gather)
The observations in 1.) presume the existence of malicious code, such as an XSS or SQLi.
However, this does not necessarily need to be the case. In a request by itself, a failed
login attempt does not seem to be malicious and would not be detected by inspecting
the request. However, a failed login attempt occurring every second for multiple hours
is indeed suspicious, possibly a brute-force attempt to guessing a users password. A
multi-agent system as the SEASALT framework suggests can be helpful to detect these
general patterns of timed attacks.

Having two different types of objectives to observe leads to at least two different casebases.
Consequently, we need a possibility to communicate between these casebases to detect anomalies.
SEASALT offers the opportunity in the form of multiple topic agents. For example, we can
deploy one topic agent focusing on the traffic patterns. This agent may find a regular similar
request each 0.4 seconds, which may indicate an automated process and could be worth further
investigation. Therefore, the traffic agent forwards the information to the coordination agent,
who distributes the suspicious requests to other specified topic agents, such as SQLi-, XSS-,
and authentication testing topic agents. Each agent contains specific knowledge containers
to successfully classify the requests in question. In the following subsections, we describe the
structure and content of the knowledge containers.

3.1. Knowledge Container: Vocabulary

The vocabulary knowledge container describes the terms used as part of a knowledge-intensive
case based reasoning system [5]. Therefore, we exemplary describe a few chosen attributes
used for our cases.

Source/destination IP address: While communicating in a network, an individual IP ad-
dress is assigned to each device (see Figure 1). An IPv4 addresses consist out of four triplets,
each having values between 0 and 255, for example 147.172.2.69 represents the unique IP address
of the hackers device. IPv6 extends this to eight groups of four hexadecimal digits. However,
internal networks such as the home office example are usually managed through network
address translation methods (NAT routing). For traffic and network detection, the consequence
is, that only the IP address of the router (192.168.0.1) is visible to the internet, thus, we may not



Figure 1: Example of a small home office network, connected to the internet through a firewall. On the
other side, a malicious user (“hacker”) is also connected to the internet and needs to pass the firewall
to connect to the internal network.

be able to identify how many attackers are behind the same network4. It is important to note
that IP addresses may change after 24 hours or after a restart of the router.

Source/destination port: While a computer operates under a certain IP address, it may offer
different services on different ports. The port is usually directly following after the IP address.
For example, 192.168.0.56:443 indicates a secure web server (HTTPS) on port 443. The Internet
Assigned Numbers Authority (IANA) defines a global standard list5 of which services should be
operated on which ports and it is heavily encouraged to network administrators to follow these
suggestions. This attribute may be used to distinguish between a legitimate request of a web
source or an information gathering approach (scanning on any other unexpected ports).

Protocol: Similar to the IP address and port, the communication between server and client
can be established based on different protocols. For example, a typical visit of a website omits a
three-way-handshake to establish a connection, using the TCP protocol. The actual request,
asking for a certain document, uses the HTTP protocol. In contrast, UDP is a protocol, which is
primarily used to send data. This protocol may be used to circumvent firewalls preventing to
scan the target host and thus may indicate an attack.

For further attributes, we remain with a short tabular overview in Table 1.
To summarize the vocabulary: We are basically using ‘typical’ network traffic data to dis-

tinguish between legitimate traffic and suspicious traffic by identifying irregularities in used
protocols, port, and other attributes. Using a case-based instead of a rule-based approach here
seems to be promising in regards to identifying similar attacks as there are multiple differ-
ent attributes to consider which increases the complexity of a properly configured rule-based
system.

4Rest assured, with the compliance of internet service providers, traffic can be pin-pointed to a certain machine
and criminals may be identified.

5For more information and the complete list of standardized ports, see
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml (last vali-
dation 08/18/2021)



Attribute Type Description
Length number Length of the request
Timings symbol opening a connection every 5 min, 15 sec, 0.4 sec, 10 ms, 5 ms
Description text additional information added by a maintenance engineer
Request/Info text content of the request
User-Agent text used web browser including version number
Status number server status based on the request (200-OK, 403-Forbidden, ...)

Cookie text additional information gather about the user
Referer text URL of the last visited website
Time text timestamp of the request/response
Method symbol HTTP verbs which allow to infer an intent of the request
Number number position in the exported data lists

Table 1
Brief description of attributes used in the case structure.

3.2. Knowledge Container: Similarity

The similarity container defines the local similarities of attributes and their contribution to the
respective amalgamation function. For text attributes, initial testing showed the best results by
using the Levenshtein distance. Numerical attributes performed well by using a polynomial
function with factor 5 (see Table 2). Future work will need to revisit on automated learning of
optimal weights. We remain with a short tabular overview in Table 2.

In terms of global similarity, which depicts the weight and thus the importance of an attribute,
we begin with a distribution based on the experience and estimation of a domain expert. Table
2 provides an overview. In general, we impose a higher similarity for attributes which are more
likely to identify an attack. We form the global similarity by using the weighted sum of all local
similarities.

3.3. Knowledge Container: Case Base

Based on the observation and the need of two different case structures, we consequently define
two different kinds of casebases: 𝐶𝐵𝑟𝑒𝑞𝑢𝑒𝑠𝑡 and 𝐶𝐵𝑡𝑟𝑎𝑓𝑓𝑖𝑐. The former casebase inspects a
single request - typically through the HTTP protocol - while the latter observes multiple requests
through the network in general. An initiated agent may only have one kind of casebase. As
case representation, we use attribute-value-pairs. Regarding automated learning of cases, we do
not see a valuable opportunity in automated learning without overfilling the case as of today. It
remains the maintenance engineers’ decision whether to retain or to deny a new problem case
into the case base.



Attribute Type Similarity Weight
IP address text Levenshtein distance 1
Length number Polynomial with 5 6
Protocol text Levenshtein distance 1
Description text Levenshtein distance 7
Request/Info text Levenshtein distance 7
User-Agent text Levenshtein distance 1
Status number Polynomial with 5 4
Cookie text Levenshtein distance 1
Referer text Levenshtein distance 1
Time text Polynomial with 5 2
Method symbol Predefined symbol matrix 1
Timing symbol Predefined symbol matrix 4
number number Polynomial with 5 3

Table 2
(left) Local similarities of the attributes and attribute weights for computing the global similarity using
the weighted sum. (right) Similarity function polynomial with 5 for attributes of type number. The
higher the factor, the earlier the similarity between case and query decreases.

4. Development of a prototype

4.1. Retrieving data - OWASP Juice Shop, Wireshark, and Burp

Wireshark is the standard tool for network analysis across many different institutions due to
its large variety of different observable protocols and continuing development by volunteer
contributions.

Per default, seven columns are displayed: No., Time, Source, Destination, Protocol, Length,
Info. No. iterates over the number of packages received and Time is measured in milliseconds
since actively tracking (in contrast to timestamps in Burp). By investigating a certain package,
we receive further information such as which flags have been set. We use the inbuilt function
of exporting the data to CSV format6. As initial casebase, we use the retrieved data and treat
each package as a case and provide an interface to query the casebase. This allows us to search
for ‘timed traffic’ such as slow brute force attacks or scans which occur, for example, every 15
seconds. One might argue we could just take the attribute Time and calculate ± 15 seconds. Due
to wavering latency in the network, we would not be able to identify these timings. However,
using CBR and querying the system for similar cases in ± 15 seconds detects similar traffic.

To inspect one package in more detail, we use Burp. Just as Wireshark, Burp is another
standard tool for network analysis and available for free. A request and the corresponding
response are compared to each other. Both contain a head- and a body section - separated by an
empty line. As one can see, there are a lot of potential attributes for a CBR system to identify
similar traffic. In addition to the presentation of the traffic, Burp offers the opportunity to adjust
a request and send it again to the server, hoping for an information leak (as an attacker). In most

6Unfortunately, the resulting CSV writes all data in one column per row, attributes are separated by commata.
We wrote a parser to structure the data.



attacks, only one parameter will be changed to identify the influence of the parameter - and
this allows the CBR system to identify this diverging traffic. Nevertheless, to gather training
cases, we need a vulnerable website, which can be attacked without legal consequences. This
is provided by the OWASP7 Juice Shop8, which is a vulnerable web application with a large
number of different security issues. Against this web application, we can launch attacks and
store them as attack cases in a separate (malicious) casebase.

4.2. Implementation in Java using myCBR 3.0

Figure 2: Userinterface to interact with the
CBR system. Weights can be set on
the right side.

The prototype implementation is a dynamic
web project written in Java. By using Java server
pages, forwarding via servlets, and creating dy-
namic content with Java custom tags, any user
on the internet may interact with the system
(see Figure 2). Since weighting the attributes of
a CBR system is an experience-driven process,
we enable the users to set their own weights.

Figure 3 illustrates the general process of the
system: Beginning on the index page of the dy-
namic web project, a user may either upload
an XML export file from Burp, or a CSV ex-
port file from Wireshark. Either way, an agent
will be instantiated. These agents are SEASALT
agents as presented in Section 3 and contain
their own casebases. These casebases are initi-
ated by adding the content of the imported files
to the initially empty casebase. If the user does
not choose to update a file, a query can be sent
to the communication agent. The user speci-
fies the query by filling a form representing all
possible attributes of a case. The communica-
tion agent queries topic agents and awaits their
response to the users query. Each topic agent
presents its case with the highest similarity. If
a predefined threshold cannot be reached, the
communication agent asks the user for a more detailed query.

Otherwise, the communication agent presents the most similar case to the user. Every agent
uses the myCBR9 3.0 SDK which is an open-source similarity-based retrieval tool developed by
the Competence Centre CBR at DFKI, Germany, and the School of Computing and Technology
at the University of West London, UK.

7The open web application security project (OWASP) is a community driven project, offering security materials
and training for free.

8For more information, see https://owasp.org/www-project-juice-shop/ (last validation 08/18/2021).
9For more information, see http://mycbr-project.org/ (last validation 08/18/2021)

https://owasp.org/www-project-juice-shop/
http://mycbr-project.org/


Figure 3: Overview of the prototype. The workflow starts at index.jsp. By importing a Wireshark or
Burp Export, the corresponding agent will be initialized. Afterwards, the user may send queries to the
communication agent.

As an example use-case, we want to investigate the current traffic. To go through each packet
manually would be a tedious task due to the flood and volatile data. However, we can begin
with investigating the Wireshark import for an overview of the traffic data. This enables the
traffic agent to provide a list of the top 𝑛 loudest10 clients. In Figure 4, the user retrieves a
tabulated and a visual presentation of the traffic, filtered by the IP address of the clients. As
one can see, the first client issued almost 60 times more requests than the third client - which
makes the first client suspicious.

10“loud” measured in total number of requests sent.

Figure 4: Top 3 loudest clients as graphical and tabular overview. The graphs display the accumulated
amount of requests during the last two seconds.



This can be communicated to the communication agent and forwarded to the request agent.
Now, the request agent can filter for the IP address of the suspicious client and start investigation
for possible attacks by a smaller range of clients to test.

5. Experiment and Results

We distinguish between a normal and a malicious casebase. Initially, we fill the normal casebase
our agents with XML/CSV training imports, which do not contain malicious traffic to establish
a model of valid traffic. In a second step, we fill the malicious casebases with hand-crafted
malicious requests and public lists of known SQLi/XSS attacks (‘payloads’) to establish a model
of malicious traffic.

By using Burp and the OWASP Juice Shop, we are located in a controlled environment without
noisy data. In a third step, for training purposes, we import a CSV or a XML file and search
for malicious traffic. For each malicious request identified this way by our prototype, we offer
the user, e. g., a maintenance engineer to ultimately decide whether to move the case to the
malicious or to the normal casebase.

This way, we can naturally fill our casebase of malicious traffic and further increase the
precision of our malicious traffic model. This opens up two opportunities:

• Contrast normal and malicious traffic (i. e. as an explanation)
• Prioritize traffic based on the “top 3 loudest clients” offered by the traffic agent to test

against the malicious casebase (higher success probability)

Our test is similar to the third step: We upload a XML file with six malicious requests out of
a total of 795 requests. These malicious requests are manually created and are not part of the
malicious casebase. We aim to automatically identify the malicious requests after comparing
each of the 795 requests against cases in our malicious casebase. Basically, we query the CBR
system automatically for each request against the malicious casebase which has been trained
with malicious cases before. We are in an advantageous situation as a query is usually complete
(each attribute has a value assigned), with a few rare exceptions such as an empty cookie. The
requests contain different attack vectors such as XSS and SQLi shown in Table 3.

We expect to find similar cases with at least 90 % similarity. Indeed, we can identify an attack
containing a similar payload as ID 6 with 90 % similarity:

{‘email’:’ ’ AND INSERT INTO users VALUES(1,2,3,4); –’,’password’:’123’}.

This attack revolves around guessing the number of columns the queued table contains by
adding numbers in the round brackets after VALUES, which is a common testing approach [12].
However, unfortunately, we only found one out of six attacks. Lowering the threshold to at least
85 % similarity sheds light onto the situation: now, we also do find payloads with the ID 1,3,5,
which adds up to identifying four out of six attacks. Nevertheless, we also find false-positives
in 11/16 cases and one redundant finding.



ID Payload Comment
1 <script>alert(’XSS!’)</script> typical XSS alert window
2 ’ or ’1’ = ’1 basic SQLi check
3 ’-5455%’) OR 2598=(SELECT COUNT(*) FROM

SYSIBM.SYSTABLES AS T1,SYSIBM.SYSTABLES AS
T2,SYSIBM.SYSTABLES AS T3) AND (’%’=’

very specific SQLi targeting
IBM databases

4 */’>alert(1)/* XSS
5 <x oncut=alert(1)>A HTML-Injection paired

with XSS
6 ’ AND INSERT INTO Users VALUES(1); – SQLi to investigate

database structure

Table 3
Overview of used XSS/SQLi payloads.

6. Conclusion and Future Work

We presented a novel CBR application in the IT security and network domain to detect attacks
towards a companies network - regardless of external or internal traffic. As one cannot cover
each attack by developing and maintaining a large set of rules, we offered an application to detect
similar attacks as soon as possible. We identified possible attributes for a reasonable similarity
assessment and gathered the information using the commonly used tools Wireshark and Burp.
With an instantiation of the SEASALT framework, we ensured a rational modularization of
tasks and guaranteed expandability by simply adding additional topic agents for any new attack
vector. The results were two-fold: on the one side, we were able to detect one of six attack
vectors by retrieving similar cases, which was the original goal of the prototype. However, on
the other side, the precision is too low and does not cover enough cases as initially expected.

It remains for future work to further adjust the local- and global similarity. As we now have
a prototype for detecting malicious traffic, we may now focus on the training of the knowledge
containers. This should result in a higher precision to find similar cases in our malicious
casebase and lower the rate of false-positives. Additionally, this work opens up opportunities
for explainable case-based reasoning: as soon as the weights have been trained, the user should
receive an explanation on how the similarity has been assessed. Especially, since the weights
are heavily dependant on the use case.



References

[1] J. Johnson, Internet usage worldwide - statistics & facts, 2021. URL: https://www.statista
.com/topics/1145/internet-usage-worldwide/#dossierSummary, Statista. Website. Last
validation: 05/04/2021.

[2] L. LaBerge, C. O’Toole, J. Schneider, K. Smaje, How COVID-19 has pushed companies
over the technology tipping point—and transformed business forever, 2020. URL: https:
//www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/
how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transfor
med-business-forever, McKinsey & Company. Website. Last validation: 03/31/2021.

[3] Cloudflare, What is the OSI model?, 2021. URL: https://www.cloudflare.com/learning/ddos
/glossary/open-systems-interconnection-model-osi/, Website. Last validation: 04/06/2021.

[4] K. Bach, Knowledge Acquisition for Case-Based Reasoning Systems, Ph.D. thesis, Univer-
sity of Hildesheim, 2012. URL: http://www.dr.hut-verlag.de/978-3-8439-1357-7.html.

[5] M. M. Richter, R. O. Weber, Case-based Reasoning, in: Handbook of Artificial Intelligence,
Springer Heidelberg New York Dordrecht London, 2013. doi:10.1007/978-3-642-40
167-1.

[6] S. Kapetanakis, A. Filippoupolitis, G. Loukas, T. Saad Al Murayziq, Profiling cyber attacks
using case-based reasoning, in: 19th UK Workshop on Case-Based Reasoning, 2014, pp.
39–48. Conference date: 01-01-2014.

[7] M. L. Han, B. I. Kwak, H. K. Kim, Cbr-based decision support methodology for cybercrime
investigation: Focused on the data-driven website defacement analysis, Secur. Commun.
Networks 2019 (2019) 1901548:1–1901548:21. URL: https://doi.org/10.1155/2019/1901548.
doi:10.1155/2019/1901548.

[8] D. Schwartz, S. Stoecklin, E. Yilmaz, A case-based approach to network intrusion detection,
in: Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002.
(IEEE Cat.No.02EX5997), volume 2, 2002, pp. 1084–1089 vol.2. doi:10.1109/ICIF.2002.
1020933.

[9] A. Micarelli, G. Sansonetti, A case-based approach to anomaly intrusion detection, in:
P. Perna (Ed.), Machine Learning and Data Mining in Pattern Recognition, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 434–448.

[10] J. M. Schoenborn, K. Althoff, Prototype application to detect malicious network traffic with
case-based reasoning and SEASALT, in: Workshops Proceedings for the Twenty-ninth
International Conference on Case-Based Reasoning co-located with the Twenty-ninth
International Conference on Case-Based Reasoning (ICCBR 2021), Salamanca, Spain,
September 13-16, 2021, CEUR Workshop Proceedings, CEUR-WS.org, 2021.

[11] J. Kettle, Practical HTTP host header attacks: Passwort reset and web-cache poisoning, 2013.
URL: https://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html,
Skeleton Scribe. Website. Last validation: 04/01/2021.

[12] M. Pound, Running an SQL Injection Attack, 2016. Computer Science at the University of
Nottingham. Computerphile.

https://www.statista.com/topics/1145/internet-usage-worldwide/#dossierSummary
https://www.statista.com/topics/1145/internet-usage-worldwide/#dossierSummary
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
http://www.dr.hut-verlag.de/978-3-8439-1357-7.html
http://dx.doi.org/10.1007/978-3-642-40167-1
http://dx.doi.org/10.1007/978-3-642-40167-1
https://doi.org/10.1155/2019/1901548
http://dx.doi.org/10.1155/2019/1901548
http://dx.doi.org/10.1109/ICIF.2002.1020933
http://dx.doi.org/10.1109/ICIF.2002.1020933
https://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html

	1 Introduction
	2 Related work
	3 Conceptual model: framework and knowledge containers
	3.1 Knowledge Container: Vocabulary
	3.2 Knowledge Container: Similarity
	3.3 Knowledge Container: Case Base

	4 Development of a prototype
	4.1 Retrieving data - OWASP Juice Shop, Wireshark, and Burp
	4.2 Implementation in Java using myCBR 3.0

	5 Experiment and Results
	6 Conclusion and Future Work

