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Abstract: Optical coherence tomography (OCT) enables the non-invasive acquisition of high-
resolution three-dimensional cross-sectional images at a micrometer scale and is mainly used in
the field of ophthalmology for diagnosis as well as monitoring of eye diseases. Also in other
areas, such as dermatology, OCT is already well established. Due to its non-invasive nature, OCT
is also employed for research studies involving animal models. Manual evaluation of OCT images
of animal models is a challenging task due to the lack of imaging standards and the varying
anatomy among models. In this paper, we present a deep-learning algorithm for the automatic
segmentation of several layers of mouse skin in OCT image data using a deep convolutional
neural network (CNN). The architecture of our CNN is based on the U-net and is modified by
densely connected convolutions. We compared our adapted CNN with our previous algorithm, a
combination of a random forest classification and a graph-based refinement, and a baseline U-net.
The results showed that, on average, our proposed CNN outperformed our previous algorithm
and the baseline U-net. In addition, a reduction of outliers could be observed through the use of
densely connected convolutions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical Coherence Tomography (OCT) is a non-invasive imaging modality that enables the
acquisition of high-resolution 3D volume images of biological tissue [1]. The principle of OCT is
similar to that of ultrasound imaging, except that light is used instead of sound waves. The image
acquisition is based on light with short coherence length, which is utilized to measure the distance
of partially reflecting structures in biological tissues using an interferometer. The resulting 1D
signal is called A-scan. Multiple laterally combined A-scans build a 2D cross-sectional image
called B-scan. A 3D OCT volume then is composed of a series of adjacent B-scans. Due to its
penetration depth of a few millimeters at a resolution at micrometer scale, OCT allows a highly
detailed representation of smallest structures. OCT is a rapidly growing imaging technique that is
used in various biological and medical disciplines. Particularly in ophthalmology, OCT has been
established as an imaging modality for the diagnosis of retinal diseases since the early 1990s [2].
Later, OCT was also introduced in dermatology where it represents a non-invasive alternative
to biopsy and histology [3, 4]. Besides its application in clinical routine, OCT is also used in
research studies involving animals as in vivo models instead of humans [5–7].
Especially the evaluation of OCT images of animal models is a challenging task. Missing

standardized image acquisition procedures, as well as varying anatomies of the animal models,
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complicate the evaluation. Therefore, quantitative analysis of OCT images, which often includes
manual segmentation, is very time-consuming and impractical. This motivated the development
of semi- as well as fully automated segmentation methods, which have been described in
preliminary works. Due to the widespread use of OCT in ophthalmology, research has been
focused on layer segmentation of the human retina [8–16]. Specifically, graph-based models
segmented retinal layers with high accuracy. Garvin et al. integrated boundary conditions into the
graph-theoretical model in order to obtain smooth surfaces as well as to allow predefined distances
between the individual layers [9]. However, segmentation errors occur if larger pathologies
are present. To address this problem, a combination of machine learning and mathematical
modeling was investigated. In general, the machine learning algorithm’s prediction was used as
initialization, e.g. random forests (RF), to support the graph-based segmentation [12,17]. Due
to their widespread popularity in computer vision, research interest in deep learning methods,
especially convolutional neural networks (CNNs), has grown rapidly in medical image analysis.
In contrast to classical machine learning approaches, deep learning methods learn hierarchical
features directly from training data. The resulting classifiers represent complex functions that
can even capture highly varying training data. Fang et al. [18] used a CNN in combination with
graph search to segment retinal layers. Graph search was initialized with boundary classifications
of the patch-based CNN. In [19] Ronneberger et al. presented the U-net for the segmentation of
biomedical image data. The architecture of this fully convolutional network (FCN) consists of a
multiscale encoder and decoder part linked via skip connections, which efficiently capture large
context and enable accurate dense predictions, avoiding further steps such as graph search [18].
Ronneberger et al. were able to show that they can efficiently train the U-net with only a very
small number of training data using advanced augmentation techniques. Due to these properties,
the U-net represents the architectural basis in numerous subsequent works [13–16].
Furthermore, multiple papers proposed algorithms for the automated layer segmentation of

different tissue types, such as retina [20,21], skin [22–26] or even cartilage [27], in OCT using
animal models. In their work [24], Sheet et al. segmented OCT images of mouse skin and
compared the results with corresponding histologies. They employed a transfer learning approach
to integrate statistical physical models into an RF classifier. In a subsequent study [25], Sheet et
al. used denoising auto-encoders to learn tissue-specific speckle presentations for classification.
In our previous work [26], we proposed an algorithm for segmenting the subcutaneous fat

layer in OCT image data of the mouse skin. An RF classifier was used to segment single B-scans.
Similar to [12, 17], we integrated RF predictions into a graph-based approach. The algorithm
can be summarized in four steps as follows: After several preprocessing steps (e.g. denoising,
intensity homogenization and flattening) normalized 2D OCT B-scans were segmented using

Preprocessing

Graph-based Refinement

Random Forest Segmentation
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OCT Volume
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CNN-based Segmentation

OCT Volume

Output Segmentation
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Fig. 1. Flowcharts of our previous approach [26] a), where we used a random forest classifier
in combination with graph-based refinement, and our new CNN-based method b).
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an RF classifier. Subsequently, segmentation errors of the RF were corrected by heuristic
postprocessing steps. Finally, an additional graph-based refinement step took neighborhood
information into account and extended the approach to the three-dimensional space which allows
the segmentation of a whole OCT volume at once. A flowchart of this approach is shown in Fig.
1. Further details of the algorithm can be found in [26]. The algorithm was used in the work
of Salma et al. [7], which investigated the thickness change of the subcutaneous fat layer after
localized cold exposure (selective cryolipolysis) [28] using a mouse model. Despite the fact that
our algorithm already provides accurate and robust segmentation results for the subcutaneous fat
layer, it is difficult to adapt it to new research issues, such as the segmentation of further structures
or the customization for a different animal model. In this case, it would be necessary to modify
the graph-based model as well as the RF classification with respect to the selected handcrafted
features. Moreover, the preprocessing of the image data would have to be modified, too.
In this paper, we extend our work [26] and present a deep learning algorithm for segmenting

multiple layers as well as tattoo areas in OCT image data using a CNN. Unlike in [26], the
CNN takes the raw B-scans of the OCT volume as input and outputs a pixelwise prediction
for each class label. This significantly reduces the number of processing steps (see Fig. 1).
Furthermore, the CNN-based approaches can be more easily adapted to new segmentation
problems compared to other works [9, 12, 17, 26], since e.g. no adjustments to handcrafted
features or modifications of graph models have to be made. Due to the already mentioned
accurate and robust segmentation performance of the U-net, we use this architecture as a basis for
our algorithm. Our CNN-based segmentation approach significantly outperforms our previous
approach [26] in terms of segmentation accuracy. By using densely-connected convolutions [29]
it can be shown that the accuracy of segmentation accuracy increases compared to baseline U-net
and becomes more robust against outliers.

2. Materials and methods

2.1. Image dataset

The same OCT image data set as in [26] was used for this work. It consisted of 20 OCT
volumes of the inguinal region of four different C57BL/6 mice. OCT images were acquired
before, immediately after as well as 30 days after cosmetic treatment. All volumes were acquired
using a Telesto II OCT system (Thorlabs, Inc.) at a central wavelength of 1310 nm, an axial
resolution of 3.4 µm and a transversal resolution of 6.5 µm. With an image volume size of
1024×1307×1307 voxel, the total field of view is 3.5 × 8.5 × 8.5mm. A sample spacer was used
during acquisition, which was placed directly on the mouse skin to keep the tissue in place and
to reduce breathing motion. In addition, water was applied between the sample spacer and the
mouse skin, which reduces the scattering of the incident light beam. Fig. 2 shows an example
OCT B-scan with the associated FOV image and histology of the corresponding tissue structures.
To ensure that the same area can be imaged over a longer period, the mice were tattooed before
the first examination to guarantee relocalization. Due to strong motion and shadow artifacts, two
volumes had to be excluded, resulting in a total number of 18 OCT volumes, which means that
an additional volume was used as in [26]. Training, as well as evaluation of supervised machine
learning algorithms, require ground truth data. Due to its high effort, the manual segmentation
of entire OCT volumes was not feasible in this work. Therefore, four representative B-scans per
volume were selected and manually segmented by two human experts. For this work, the software
tool ITK-Snap [30] was used. All pixels of each B-scan were segmented into the following five
classes: (epi-)dermis layer (DL) , subcutaneous fat layer (SFL) , fascia and muscle layer
(FML) , tattoos and background. Since the epidermis layer is difficult to detect at contact
points of the sample spacer (see Fig. 2), epidermis and dermis layer were treated as one class.
Regions above or below the target structures were considered as background. In total, the image
data set consisted of 72 B-scans, each with two individual expert annotations.
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Fig. 2. OCT scan of mouse skin of the inguinal area. (a) B-scan of inguinal mouse skin.
Note that the sample spacer is visible as a bright horizontal line in the upper part of the
image, whereby it is difficult to distinguish between epidermis and dermis at contact points.
The red rectangle in the overview image (b) visualizes the field of view and the dashed line
indicates the scan position. A histological section of mouse skin is given in (c).

2.2. Deep learning algorithm

In this paper, we present a deep learning algorithm that automatically segments OCT volumes of
the mouse skin. Our algorithm consists of a CNN-based on the architecture of the U-net. The
CNN segments an OCT volume by processing each B-scan independently. After being processed,
the predicted B-scan segmentations are merged into a single output volume. The architecture of
our CNN is described in 2.2.1 and the training in 2.2.2.

2.2.1. Network architecture

The proposed CNN architecture is inspired by the U-net [19], which consists of a contracting
encoder and an expanding decoder branch (see Fig. 3). On one hand, the encoder receives an
image as input and sequentially generates feature maps on multiple scales and abstraction levels,
resulting in a multi-level, multi-resolution feature representation. On the other hand, the decoder
receives the feature representations of the encoder and gradually generates an output prediction
of every image pixel in the original resolution. In the following, we describe the baseline U-net,
which shows only minor changes compared to [19].

The layers of the encoder consist of two 3×3 convolutions, each followed by a rectified linear
unit (ReLU) as activation function. A 2×2 average pooling with a stride of two halves the image
resolution at the end of each layer. Furthermore, after each pooling operation, the number of
feature channels is doubled. Starting with 32 feature channels in the first encoder layer, this results
in a number of 512 feature channels in the lowest encoder layer. In the decoder branch, features
traverse every double convolution block, halving the number of feature channels per scale level.
Furthermore, the feature map resolution is gradually increased using bilinear upsampling [31] in
order to match the feature map resolution of the encoder’s respective scale level. Subsequently,
the upscaled features are concatenated with the corresponding encoder features of the same scale
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level via skip connections before they pass the next double convolution block. Skip connections
maintain detailed contextual information and enhance gradient flow during backpropagation. The
classification layer is realized by a 1×1 convolution where the number of output features equals
the number of classes. Finally, a softmax activation function transforms the features of the output
layer into probabilities that indicate to which class a pixel belongs to. Batch normalization is
applied after each 3×3 convolution for faster convergence during training [32]. In total, encoder
and decoder consist of five and four layers respectively.
For this work, an additional skip connection is added around each double convolution block

of the introduced baseline U-net (see Fig. 3). Instead of an identity mapping using a residual
connection [33], we concatenate the input channels of each individual double convolution block
with its output. The number of output channels of the second 3×3 convolution and an additional
1×1 convolution in the skip connection are each set to f/2 where f is the number of output
feature channels of each convolution block (see Fig 3). This ensures that f does not change
due to the feature concatenation. The use of such densely-connected (DC) blocks has several
advantages. They reduce the problem of the disappearing gradient, enhance feature propagation
and encourage feature reuse [29].
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Fig. 3. Architecture of our proposed DCU-net.

2.2.2. Training

We train our network in an end-to-end manner using stochastic gradient descent with Adam
optimization [34]. The exponential decay rates β1 and β2 are set to 0.9 and 0.999, respectively.
The training starts with an initial learning rate of 10−4 which is gradually adjusted by an
exponential scheduler with decay rate γ = 0.99.
The Dice metric is utilized as loss function for optimizing the CNN during training [35]. It

quantifies the overlap between prediction and ground truth segmentation. More specifically, the
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generalized version [36] of the Dice loss is used:

JDSC =
2
∑

l αl
∑

x∈Ω pl(x)gl(x) + ε∑
l αl

∑
x∈Ω p2

l
(x) +

∑
x∈Ω g

2
l
(x) + ε

(1)

where pl(x) and gl(x) represent values of the pixel location x of the image domain Ω of the
predicted and the ground truth segmentation, respectively. Furthermore, the generalized Dice
loss uses an additional weighting factor αl that provides invariance to each individual class to
effectively counteract the class imbalance. Inverse class frequency weighting is used for αl . The
parameter ε ensures numerical stability and is set to 10−5.

We trained each fold for a total of 300 epochs. Furthermore, weight initialization of the CNN
is realized utilizing the approach of Glorot et al. [37]. To maximize the GPU usage, we set the
batch size to five during training. Furthermore, online data augmentation is performed to deal
with the limited amount of training data and to prevent overfitting. We therefore randomly apply
horizontal flips and rotations (±7◦) to each input B-scan image. In order to increase computational
efficiency, each B-scan is first cropped to remove unnecessary background and then resized. In
addition, zero-padding is used, which results in a final resolution of 256×656 pixels for each
input B-scan. Network architecture, as well as training and test procedures, are implemented in
Python 3.6 using the PyTorch v0.41 framework [38]. Training is performed on a NVidia GeForce
1080 TI using CUDA v8.0 with cuDNN v5.1.

3. Experiments

3.1. Comparative methods

In order to demonstrate the performance of our proposed CNN-based segmentation approach
using DC blocks (DCU-net), we evaluated it against our previously developed algorithm, where
an RF classier was used in combination with a graph-based refinement [26]. This approach
is referred to as RF+GC in the following. Compared to [26], we extended the graph-based
refinement of the RF+GC algorithm for further investigations in the meantime, allowing us
now to segment both the DL and tattoo regions. However, modeling the FML turned out to be
difficult, therefore it is not computed by the RF+GC algorithm in this work. Tattoo areas were
not the focus of a particular research question, but we would like to use them in future works as
landmarks for the comparison of different time points. Furthermore, the advantage of DC blocks
was evaluated. Therefore, DCU-net was compared with the baseline U-net architecture (U-net)
as described in 2.2.1.
In order to fully utilize the data set, we ran an 18-fold cross validation (18FCV). For this

purpose, the OCT volumes were divided into non-overlapping training, validation and test data
sets for each run in a ratio of 13-4-1. Note that we used the four selected B-scans of each OCT
volume (see Sec. 2.1) for the 18FCV. The 18FCV was carried out individually for each expert’s
ground truth. This means that 18 different CNNs or RFs were trained per expert dataset. No
validation set was used for the 18FCV of the RF+GC algorithm.

3.2. Evaluation metrics

Three different metrics are employed for a quantitative assessment of segmentation accuracy.
Dice similarity coefficient (DSC) is utilized to quantify the overlap between the predicted and the
ground truth labels. The calculation of the DSC takes into account only the intersection of two
sets of points, and not the distance to outer points. Also the size of the segmented areas has an
effect on the DSC, since misclassifications have a stronger impact on smaller areas than on larger
ones. Therefore we additionally use the average symmetric surface distance (ASSD) in this work.
Let SP = {p0, . . . , pn1 } and SG = {q0, . . . , qn2 } be subsets of a predicted segmentation P and a
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ground truth G with SP ⊆ P and SG ⊆ G containing surface points. The surface distance SD
between SP and SG is then defined as:

SD(SP, SG) =
n2∑
i=0

min
0≤ j<n1

‖pj − qi ‖2. (2)

The surface distance can then be used to determine the ASSD:

ASSD =
SD(SP, SG)

2n2
+

SD(SG, SP)

2n1
. (3)

In addition, the Hausdorff distance (HD) is also reported for outlier detection:

HD = max[SD(SP, SG), SD(SG, SP)]. (4)

4. Results

4.1. Qualitative analysis of segmentation performance

The segmentation results of the algorithms were visually examined and compared with the
corresponding ground truth for qualitative analysis. For illustration two B-scans were selected
(Figs. 4 and 5).

Overall, there was a high visual agreement between the segmentation results of the algorithms
and the ground truth segmentations of the experts, especially for the DL . More noticeable
deviations from ground truth could be observed for the SFL and FML since they are more
difficult to segment than the DL. One of the reasons for this is the higher variability of SFL and
FML and the difficulty to distinguish boundaries. Especially the differentiation between SFL
and FML is very diffuse. The reason for this is that SFL and FML are much lower in contrast
to DL and more affected by signal extinction as a result of their lower spatial position. The
tattoo areas were segmented by all methods with varying performances. In comparison to
the CNN-based algorithms, RF+GC segmented tattoo regions with low accuracy. Both U-net
and our DCU-net segmented tattoos showed high agreement to the ground truth. Furthermore,
the U-net segmented the tattoo regions with a slightly higher visual agreement to ground truth
than our proposed DCU-net. Despite the better segmentation performance of the CNN-based
algorithms, they showed more outliers which are more strongly represented in segmentations of
the U-net (see Figs. 4(g) and 5(i)) than in those the DCU-net (see Figs. 4(j) and 5(k)). The vast
majority of outliers are located in areas of deeper tissue layers, where inguinal fat and fascia
tissue also occur and may be classified by CNNs as SFL or FML. These errors were compensated
by the graph-based refinement of the RF+GC algorithm.

4.2. Quantitative analysis of segmentation performance

The quantitative analysis of the segmentation performance of the algorithms was based on the
metrics described in Sec. 3.2, which were calculated using the manual expert segmentations.
Means and standard deviations for each metric are shown in Table 1. In addition, box plots
visualize the result distributions for all classes except for tattoos in Fig. 6. In addition, the
inter-rater reliability (IRR) between the manual annotations of both experts was calculated. The
Wilcoxon signed-rank test with a significance level of 5% was employed to identify significant
differences.
The DCU-net showed a significant better segmentation performance for DSC and ASSD

compared to the RF+GC algorithm for all classes. In addition to minor improvements for the
DL and SFL classes, an increase in DSC of 110% for the tattoo class compared to the RF+GC
algorithm was observed. The ASSDs were reduced by 8% for the DL and by 11% for the
SFL. The U-net also showed good results for DSC and ASSD. For the tattoo class, the U-net
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Fig. 4. Segmentation results of a single OCT B-scan. The B-scan without segmentation
overlay is shown in a)/b), with expert annotations in c)/d) and with segmentations by
RF+GC, U-net and DCU-net in e)/f), g)/h) and i)/j), respectively. e), g), j) or f), i), k) show
segmentation results of the 18FCV which was performed with annotations of expert 1/2.
Color mapping is explained as follows: DL , SFL , FML and tattoos . Note that the
FML was not segmented by the RF+GC algorithm.

achieved the best result with a DSC of 0.718, which is an improvement of 12% compared to the
DCU-net result and an improvement of 135% compared to the RF+GC algorithm. However, no
significant improvements in the remaining DSC and ASSD results of the U-net compared to the
RF+GC algorithm could be observed. Furthermore, the DCU-net showed a significantly better
segmentation performance for all metrics except the DSC for the FML and tattoo class compared
to the U-net.
In contrast to the CNNs, the RF+GC algorithm achieved the lowest HDs, which differ

significantly from those of the DCU-net and the U-net. The increased robustness of the algorithm
could already be seen in the qualitative evaluation (see Sec. 3.1) and is explained by the
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Fig. 5. Segmentation results of a single OCT B-scan. The B-scan without segmentation
overlay is shown in a)/b), with expert annotations in c)/d) and with segmentations by
RF+GC, U-net and DCU-net in e)/f), g)/h) and i)/j), respectively. e), g), j) or f), i), k) show
segmentation results of the 18FCV which was performed with annotations of expert 1/2.
Color mapping is explained as follows: DL , SFL , FML and tattoos . Note that the
FML was not segmented by the RF+GC algorithm.

graph-based refinement. Both DCU-net and U-net produced more outliers (see Figs. 4 and 5),
which is confirmed by the significantly higher HDs. Also for the HDs, the DCU-net provided
significantly better results than the U-net.
With a few exceptions, no significant difference between DSC and ASSDs in relation to the

IRR could be found. Only for the SFL predictions the DCU-net showed significantly higher
ASSDs to ground truth than the IRR. For the remaining classes there are no significant differences
in DSC and ASSD between the RF+GC and the U-net. Due to the presence of outliers, the HDs
of all algorithms were significantly larger compared to the IRR. The U-net only achieved the
same segmentation performance as the experts for the DSC. In contrast, the U-net segmented
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Table 1. Average results of the two 18FCVs are presented, conducted with annotations of the
respective expert. The best performances are printed in bold. The distances for ASSD and
HD are given in µm (pixel height and width correspond to 6.8 µm and 13 µm, respectively).
Note that the FML class was not computed by the RF+GC algorithm. In addition, the
inter-rater reliability (IRR) between both experts was determined.

DL SFL FML Tattoo

DSC

RF+GC 0.945 ± 0.015 0.910 ± 0.061 − 0.305 ± 0.248

U-net 0.946 ± 0.013 0.920 ± 0.054 0.873 ± 0.067 0.718 ± 0.270

DCU-net 0.950 ± 0.013 0.925 ± 0.058 0.874 ± 0.071 0.639 ± 0.264

IRR 0.949 ± 0.014 0.937 ± 0.028 0.881 ± 0.052 0.583 ± 0.380

ASSD

RF+GC 9.98 ± 4.10 14.60 ± 9.78 − −

U-net 10.20 ± 3.17 18.53 ± 17.61 20.48 ± 22.80 −

DCU-net 9.16 ± 3.23 13.00 ± 9.37 17.12 ± 21.01 −

IRR 9.05 ± 3.13 9.96 ± 4.13 11.97 ± 7.17 −

HD

RF+GC 86.67 ± 44.46 140.84 ± 89.69 − −

U-net 152.14 ± 101.76 261.72 ± 212.63 265.01 ± 207.40 −

DCU-net 113.61 ± 84.99 155.48 ± 123.54 222.92 ± 181.59 −

IRR 87.82 ± 46.74 95.10 ± 48.85 128.67 ± 87.90 −

tattoo areas significantly better than the experts. The RF+GC algorithm only reaches the expert
level for the DL class’ DSC scores.

5. Discussion

In this work, we presented a deep learning algorithm for the segmentation of different tissues and
tattooed areas of mouse skin in OCT image data. A CNNwas used based on the architecture of the
U-net. In addition to minor architectural changes, such as average pooling or bilinear upsampling,
we extended the standard convolution blocks to densely-connected blocks (see Fig. 3). We
evaluated our approach against a previously developed algorithm (RF+GC). In addition, we tested
our approach against a baseline U-net to demonstrate the advantages of densely-connected feature
extraction. DSC, ASSD and HD were used as metrics for the evaluation. We were able to show
that the segmentation performance of our new CNN-based DCU-net method is very accurate (cf.
Tab. 1). DCU-net showed both higher DSC scores and lower ASSDs compared to RF+GC. The
DCU-net achieved on average better results than the baseline U-net except for the tattoo class.
Furthermore, it could be shown that the RF+GC algorithm makes less precise predictions in
areas with high variability, such as tattoo areas or the SFL. In particular, modeling tattoo areas
or the SFL is a challenging task and difficult to describe using handcrafted features (RF) and
structure assumptions (GC). In contrast, the graph model of the RF+GC algorithm offers robust
segmentation, which can be seen in the comparatively small HDs. Compared to our previous
method, which involves four steps (see Fig. 1), (DC)U-net is able to jointly learn both expressive
local features and an accurate global classifier which robustly segments target structures without
pre- or postprocessing within a single model. Furthermore, the DC blocks not only reduce the
number of parameters to be learned, but also improve the segmentation accuracy in the area of
object contours and increase the robustness against outliers. This becomes obvious when ASSDs
and HDs are compared between the standard U-net and the DCU-net.
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Fig. 6. Quantitative analysis of the comparative algorithms. Box plots represent the result
distributions of the averaged metrics for DL, SFL and FML from both 18FCVs. Note that
the FML was not calculated by the RF+GC algorithm.
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Fig. 7. Thickness map visualization of the SFL. Each single B-scan of the OCT volume was
segmented by the DCU-net. Remaining outliers were eliminated using minor postprocessing
steps.
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The qualitative evaluation showed that the predictions of the CNN-based algorithms had both
smaller (DCU-net) and larger (U-net) topology errors in contrast to those of the RF+GC algorithm.
To address this problem, we plan to integrate topology-preserving conditions directly into the loss
function in future works. In addition, we plan to extend our approach to three-dimensional space
so that the DCU-net, similar to the RF+GC algorithm, receives further neighborhood information
as input.

Due to its high segmentation accuracy, our algorithm is able to provide the basis for quantitative
measurements, e.g. the thickness measurement of individual skin layers (see Fig. 7), which are
important for studies such as in [7]. Furthermore, the DCU-net can be more easily adapted to new
research questions or animal models in comparison to the RF+GC approach, which simplifies the
practical use.
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