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Abstract
For mixed-initiative control between cyber-physical systems
(CPS) and its users, it is still an open question how ma-
chines can safely hand over control to humans. In this work,
we propose a concept to provide technological support that
uses formal methods from AI – description logic (DL) and
automated planning – to predict more reliably when a hand-
over is necessary, and to increase the advance notice for
handovers by planning ahead of runtime. We combine this
with methods from human-computer interaction (HCI) and
natural language generation (NLG) to develop solutions for
safe and smooth handovers and provide an example au-
tonomous driving scenario. A study design is proposed with
the assessment of qualitative feedback, cognitive load and
trust in automation.
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CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); User studies;
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Introduction
Mixed-initiative control systems have shown that when de-
cisions are made or suggested by automated systems it is
essential that an explanation should be provided [12]. An
example of such a system is found in autonomous driving,
where the cyber-physical system (CPS) derives responses
from navigation functions based on human input.
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The purpose of this paper is to develop a framework to sup-
port a safe and stress-limiting handover of control to the
driver, combining benefits derived from formal AI methods,
human-computer interaction (HCI) and natural language
generation (NLG). The system must alert the user in the
“best possible way” when a handover is required. Practi-
cally, this poses the challenge that human factors may ren-
der the handover process difficult to achieve [10], in part
due to the lack of situation awareness in the presence of a
secondary task embedded in the experimental setups. The
driver, if distracted, must be able to promptly re-establish
awareness of the situation, using sensory cues from the
environment. The autonomous car can support this situ-
ation awareness by communicating its knowledge of the
situation at the time of the transition. Moreover, the system
may interact with the user, or takeover in the case of non-
response.

Towards this end, we describe our implemented framework
which utilizes the relevant environment-state information
from the open-source simulator for the autonomous system
AirSim [30], and propose a preliminary study design on the
effect of varying the modality and timeliness of explanations
in a simulated driving experience, with four handover situa-
tions.

Related Work
The related work in HCI can be separated into user model-
ing, situation awareness/vigilance, and multimodal interac-
tion.

User modeling enables a system to maintain a conceptual
understanding of the user (user model [21], in which user
differences need to be modeled explicitly). Tailoring hand-
over requests by the system to individual users makes it
possible to take into account the user’s experience as well
as individual differences relating to cognitive capacity.

Situation awareness describes the human’s awareness of
the environment, e.g. a critical situation for a task at hand
[10]. Such information depends strongly on the situation
(e.g. a pilot approaching an airport vs. a driver navigating
in dense traffic). Prior research utilizes operational quan-
titative human factors to assess the situation awareness
of human operators [1]. In highly automated systems, the
risk of humans being out-of-the-loop increases and thus a
potential handover is more difficult to achieve [10]. The de-
gree of vigilance influences the ability of a human to attend
to the environment. Past research has developed vigilance
measures based on questionnaires, and sensors assessing
heart rate, eye movement and skin conductance [9].

Multimodal interaction has the potential to increase the us-
ability and thus the safety of operation [5]. It has been used
for mobile applications and environments, including ges-
ture and speech [32], eye tracking and face detection [25],
and tangible interaction [20] to adapt to the user’s needs.
Moreover, the styles of visualization can improve “trust” in
autonomous driving [15], while identified feedback factors
[22, 15] improve the understandability and trust of system
decisions made in autonomous driving.



Architecture
Planning
The reasoning capabilities of modern AI planners [11, 29]
provide the possibility to foresee critical situations the au-
tonomous system’s decisions may lead to in the future, i.e.
situations that cannot be reliably handled by the system on
its own. Identifying such situations ahead of time is not only
crucial for a successful transfer of control to the user, but
may actually allow the handover to be avoided altogether in
certain cases.

To identify and to anticipate critical situations, a planner
builds upon an abstract model consisting of two major com-
ponents: (1) state features that allow representation of an
abstract view of the world for a specific point in time (e.g.
current position and speed of the car), and the (2) actions
the autonomous system can do at an abstract level (e.g.
accelerating, changing lanes).

In our architecture, AI planning is used for two purposes:
(1) monitoring, and (2) replanning. By default, in (1) the
planner is only used to test the autonomous system’s deci-
sions via simulations within the abstract world model; and
(2) uses planning to check the existence of an alternative to
the autonomous system’s decisions in order to avoid other
critical situations.

Description Logics
Knowledge representation based on description logics
(DLs) allows us to describe the complex environment in a
so-called ontology, specifying constraints for the system
states and for reasoning about the domain knowledge. On-
tologies have, for example, been proposed for real-time
patient monitoring [19, 28], detecting composite dance
movements in annotated ballet videos [26], and weather
and turbine monitoring [2].

By design, description logics are close to human reasoning
and can supply explanations for decisions made by a cyber-
physical system based on an ontology. The DL component
in our architecture provides input for the planning compo-
nent. By performing Boolean temporal query answering
over a sequence of potential future states, the DL compo-
nent assesses the criticality level of this route. Temporal
queries describe different potentially dangerous situations
on a road. The level of criticality that is reported to the plan-
ning component depends on the number and severity of the
situations that are detected.

Natural Language Generation
Description logic expressions serve as the semantic inputs
to natural language generation (NLG) systems, which is
analogous to the task of data-to-text generation. Tradition-
ally, this is dealt with using a pipeline consisting of content
planning, sentence planning and linguistic realization [27].
While the format of the data varies from task to task, it typ-
ically involves the linearization step [24] where structured
data are converted into sequences, before being processed
by downstream systems for linguistic realization.

In the task of delivering handover message, NLG systems
face a two-fold challenge: (1) there is insufficient annotated
data for every situation, (2) handover messages should not
cognitively overload the user, but instead be at a situationally-
appropriate level; see [8, 6, 14]. To this end, our proposed
NLG system adopts (A) semi-supervised NLG techniques
[18, 3, 31, 4] that minimize the required data and (B) an au-
tomatic quality estimator [7] that assesses the information
density of the message.

Human-Computer Interaction
For safe handovers in this context, the interaction side
needs to be considered and adapted depending on the an-
ticipated critical situation by the planner and DL component.



Therefore, user modeling techniques can be applied to as-
sess differences implied by the situation (such as cognitive
load and vigilance: see below), as well as slowly changing
individual user differences such as task familiarity (e.g. dif-
ferentiating between novices and expert operators) [16]. To
provide a basis for adaptations such as a multimodal hand-
over realization, the HCI component of the system uses
ontologies to provide access to and allow for interpretation
of the user models [17]. Although general user modeling
is already established, the special safety-critical aspects
of handover situations are still insufficiently addressed by
prior research. Interface adaptations for cyber-physical
systems have to be carefully integrated with the handover
planning and DL components with a focus on safety critical
situations. This includes developing concepts that respect
cognitive implications of human operators.
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To gain insights into the use of a planner combined with
description logics, we have chosen highly automated driv-
ing as a use case for handover in safety critical situations.
Specifically, we plan to investigate handover scenarios
where the driver has to take over control of the car in a driv-
ing simulator while performing a secondary task. The car or
the systems can signal the handover in four different con-
ditions. A goal here would be to test whether drivers would
perceive additional verbal explanations as beneficial com-
pared to a classical handover technique. The classic hand-
over simply issues a notification at point B. Furthermore,
the beep could be combined with either (a) a preceding re-
quest to take over (planner) or (b) a subsequent explanation
about why the user had to take over (DL). The last condi-
tion could be a combination of planner and DL where the
participants get an explanation and a request before the
beep which signals them to take over. Planning enables the
car to initiate the handover in time (at point A, see Figure 2)

whereas the description logic alone can only generate the
explanation in situ (at B). The criticality of the handover situ-
ation can be increased by approaching a construction zone
in the driving simulator. Furthermore, the cause of an addi-
tional danger can be introduced by different driving scenar-
ios of the cars in front of the participant. To avoid learning
effects, four different driving scenarios should be combined
with the four aforementioned conditions, like a unpredictable
driver with odd steering behavior, a car that drives to the left
lane, a very slow driver with sudden braking or a truck with
an unsecured load. Quantitative as well as qualitative data
will be collected to conduct statistical analysis as well as
participants’ personal evaluation of each handover condi-
tion. The NASA-TLX [13] and the Trust in Automation Ques-
tionnaire (TiA) [23] could assess cognitive load and trust in
automated systems, respectively. Last, a semi-structured
interview can be conducted to let the participants rank the
different conditions and give reasons for the ranking.

A current design error in today’s safety-critical systems is
that these do not feature built-in concepts to pre-plan, or
to recognize and explain problem causes to the user. Pro-
grams running in CPS participate in actions and decisions
that affect humans, especially in highly automated vehicles,
when a handover needs to be performed in critical situa-
tions. With the approach of combining formal methods with
HCI, we believe that generating verbal and visual expla-
nations in a timely manner using planning and description
logics can ease the process for the user of regaining sit-
uational awareness and allow for a safe handover of con-
trol. We would like to further develop this idea during the
workshop and discuss possible scenarios and experimental
designs.
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