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1 INTRODUCTION

The Robot Operating System (ROS) [20] is a popular robotic middleware used in research, education and industry.
Due to the large community behind ROS, many now standard algorithms for basic tasks like localization, control
and mapping have become freely available within this framework, making it the de-facto standard in the context
of UGV and UAV development. The ROS system itself is designed to run on classical CPU/GPU systems. However,
recent development has shown that FPGAs can outperform CPUs and GPUs in terms of power-efficiency for a wide
range of applications [16]. Fixed-function ASICs are the most energy efficient alternative to off-the-shelf CPUs and
GPUs. Their main drawbacks are high manufacturing cost and low flexibility as custom designs, since architectural
changes are impossible after fabrication. FPGAs, in contrast, are flexible after fabrication, while offering high power
efficiency and strong performance benefits for algorithms that are parallelizable. Also, many FPGAs offer partial
dynamic reconfiguration, enabling time multiplexing of different hardware kernels at runtime. Since not all parts of
an application can be computed efficiently on FPGAs, System-on-Chip (SoC) architectures combining CPU cores and
FPGA-fabrics on a single chip are available. With a tight low-latency interconnect between the processors and the
reconfigurable logic, these platforms combine the benefits of both worlds, making them ideal candidates for utilization
in robot vehicle platforms. To effectively make use of such FPGA-based hardware accelerators in ROS applications, they
need to be integrated into the ROS system. Besides hardware acceleration, they are also apt candidates for reduction of
power consumption, which is an important limitation factor for the deployment of unmanned vehicle platforms like
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UGVs and UAVs, where power consumption has a direct impact on the operating time due to the limited energy budget.
With robots performing in increasingly demanding applications, the applied sensor systems used are also becoming
more and more complex, resulting in a steadily growing need for computational power while meeting tight energy
limits [24].

In this paper, we propose an approach to integrate reconfigurable SoCs with FPGAs directly into ROS, allowing to
combine the benefits of high parallelism and low power consumption with the already existing drivers, controllers
and algorithms available in ROS. To demonstrate the advantages of such a heterogeneous integration, we ported the
path-following method presented in [1] to an FPGA-accelerated version integrated in the UGV Volksbot [26] platform
using ROS. Here, we use the FPGA implementation to greatly reduce power consumption and processing time compared
to the original implementation. The integration in ROS allows us to directly use the on-board cameras using the supplied
drivers and camera messages. The steering commands generated by the FPGA-implementation are used directly to
control the UGV via the existing ROS interfaces. This transparency allows us to easily compare the results of the
hardware-accelerated implementation with the software reference. In the evaluation, we show that the proposed system
layout can be used to speed up computation while significantly reducing the overall power consumption.

2 RELATEDWORK

The combination of FPGAs and reconfigurable SoCs have become more and more popular on robot vehicle platforms
in recent years. Many implementations use FPGAs and SoCs for image processing, taking advantage of the high
parallelizability of these algorithms [18]. He et al. [8] used an SoC to implement an algorithm to allow an UAV to
return to its base station using a down facing camera. Shene et al. [18] stabilized the video input on a mobile robot
for improved image processing. For such applications, Xilinx provides a Vision Library [28], offering simple image
filters and more sophisticated algorithms like stereo matching. It can be used for fast and efficient development of
FPGA-accelerated image processing pipelines. Another family of algorithms that can be accelerated with reconfigurable
devices are neural networks. Several works use neural networks on FPGAs [23, 25, 27, 31] for robotic purposes. If the
computing requirements exceed the capabilities of reconfigurable SoCs, combinations of discrete CPUs and FPGAs are
used. In [19], a complete control system for robots is presented, which accelerates crucial algorithms like Simultaneous
Localization and Mapping (SLAM), motion planning and neural networks concurrently on a dedicated FPGA. Further
examples of utilizing FPGAs in robotics are implementations of efficient Kalman Filters for self-localization of robot
vehicle platforms [4, 5], SLAM [2, 22], and fuzzy controllers [17].

Several publications use FPGAs in ROS. Cheng et al. [3] implemented a ROS node on the processing system of an SoC,
which communicates with an accelerator for the neural network YOLOv2 on the programmable logic. In a contribution
to the FPT Design Contest, Nitta et al.[10] built a robot with an FPGA SoC as central processing device. The FPGA is
used for image processing, while ROS nodes running on the ARM core are used for typical robotics tasks like line tracing
and obstacle detection. In a subsequent publication, traffic signal detection was implemented on the FPGA as well [11].
A similar robot was built by Hasegawa et al. [7], using the FPGA to capture images from a camera and to generate
PWM signals for a motor driver while running ROS on the processing system of the SoC. Moréac et al. [9] proposed a
framework for the development of HW/SW embedded systems, including ROS and Gazebo-based hardware-in-the-loop
simulation, and applied it to vision-based emergency landing in UAVs. The reconfigurable fabric contains accelerators
for either tracking, detection, or emergency landing. The system can switch between these accelerators via dynamic
partial reconfiguration. The processing system of the SoC executes two ROS nodes: a sensor interface node and the
mission manager. For simulation, the SoC uses Ethernet to communicate with a host PC running the Gazebo simulator.
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During the operation of the real UAV, the SoC sends information such as waypoints to a PixHawk board, which controls
the UAV. In addition to handling the communication with the drone or simulation, the mission manager node also
controls the hardware accelerators.

While the publications mentioned above use FPGAs in ROS systems, the integration of FPGAs into the ROS system
is not their main contribution. Yamashina et al. [30] proposed a component to integrate FPGAs into ROS systems by
encapsulating the FPGA and connecting it to ROS nodes to handle communication. The ROS Nodes are running on the
processing system of an SoC. One ROS node is used as a subscriber and another ROS node as a publisher, while both
ROS nodes communicate to the programmable logic of the SoC. To build upon their work, an automated design tool
called cReComp was implemented, which automatically generates interface-circuitry and software for FPGA-based
user logic [29]. Ohkawa et al. [14] proposed a system for architecture exploration using the ROS-compliant component
and applied it to an implementation of VSLAM. Subsequently, the same system was applied to image processing and
sensor fusion [13]. Sugata et al. [21] compared the communication latency of PC/PC communication and PC/SoC
communication, concluding that the latency is higher for the SoC. They reduced the communication overhead by
implementing the TCP/IP portion of the ROS protocol in hardware. Furthermore, Ohkawa et al. [12] explored the use of
high-level synthesis to implement ROS communication in hardware. A different methodology to augment ROS with
FPGA designs was suggested by Podlubne et al. [15].

The papers summarized previously mostly relied on a Linux distribution running on the processing system of an
SoC to handle the ROS communication, while only specific tasks were implemented with programmable logic. Using
the approach proposed in [15], everything necessary for communication with the ROS system can be implemented
in hardware, and no SoC with a processing system running a Linux distribution is necessary. ROS publishers and
subscribers are implemented in hardware. A TCP/IP interface on the FPGA controls an external network module, which
includes a TCP/IP stack. A protocol generator handles the decoding and encoding of data for ROS messages on the
FPGA.

While the presented implementations mostly concentrate on the development of dedicated and very specialized
interface nodes with integrated preprocessing, in this paper we focus on general algorithmic acceleration. Our main
contribution is to provide means for easy integration of any FPGA-based hardware accelerators into ROS nodes for
more general algorithmic purposes other than stream processing or simple provision of dedicated specialized ROS
nodes or system variants.

3 HARDWARE-SOFTWARE PLATFORM

3.1 Platform

In order to rapidly develop drones or other autonomous systems with ROS, a solid and easy to use base framework is
needed for efficient integration of FPGAs. In this section, we propose ReconfROS, our approach for a hardware-software
platform for ROS-based systems on a System-on-Chip. While the reference implementation is based on a Xilinx SoC,
the approach is applicable to any SoC that provides a CPU compatible with Linux, shares (parts of) its memory with an
FPGA and provides adequate connectivity for sensors and networking. In principle, the embedded processor is used as
the basis for the ROS installation, while the algorithmic calculations are accelerated on the FPGA. This enables efficient
solving of robotics tasks in power constrained environments and retains the flexibility and tooling of ROS, which is
typically found on desktop class computers.
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Fig. 1. The Ceres UGV (left) and an overview of the standalone version of the hardware software platform running ReconfROS.

ROS provides standardized sensor drivers while algorithms accelerated on hardware give the opportunity to signifi-
cantly reduce power draw and improve algorithmic performance. The dynamic reconfiguration and function loading of
the FPGA can be used to implement different steps of an algorithm time-multiplexed on the same hardware to adapt to
changing environmental conditions at runtime. This feature not only enhances flexibility, but also improves power
efficiency further by keeping static power loss at a minimum without the need of a more power hungry, more expensive
FPGA.

In ReconfROS, two modes of operation are possible: The SoC can be either used with its own roscore and connected
sensors (see Fig. 1), or it can be interfaced as an external node connected via Ethernet to a larger ROS system, providing
great flexibility and upgrade potential for existing robotic projects. For instance, our reference implementation is added
to an existing mobile robot as an additional component that provides path information from a camera. It is also possible
to run the pre-existing nodes on our platform and connect all sensors and actuators to it.

3.2 FPGA accelerated ROS Node

The FPGA Node on the CPU is responsible for controlling the FPGA. On startup, it initializes the interfaces necessary for
communication with processing blocks in the hardware. Commonly, the registers of the processing blocks in the FPGA
are mapped to the node’s virtual memory. This way, the node can set the parameters prior to running the processing
itself. The same interface controls starting and stopping the processing blocks as well. In complex algorithms that work
with large inputs or outputs, e.g., image processing, using only registers to transfer data between FPGA and CPU is
a major bottleneck. Therefore, the FPGA itself loads data from the main memory through dedicated memory ports
instead. The ROS node only sets algorithm parameters and memory addresses via registers, while all other data is
written to or read from exactly these memory addresses in main memory.

Ordinarily allocated memory is not necessarily contiguous, because every process has its own virtual memory
space. The Contiguous Memory Allocator (CMA) in the Linux kernel provides functions for device drivers to allocate
contiguous memory. A kernel module makes the CMA available for user space applications, e.g., the Xilinx Accelerator
driver. It allocates contiguous regions called buffers of the required size and can be mapped to the virtual memory space
of the requesting process. It also provides functions to flush and invalidate the cache of the CPU, as the FPGA cannot
access main memory through the CPU cache. The register map of the processing blocks is represented as a plain data
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struct MM2VS {
// control registers
uint32_t AP_CTRL; // Base address + 0x00
uint32_t GIE; // Base address + 0x04
uint32_t IER; // Base address + 0x08
uint32_t ISR; // Base address + 0x0c
// algorithm parameters
uint32_t MEM; // Base address + 0x10 (physical address of buffer)
uint32_t MEM_RESERVED;
uint32_t WIDTH; // Base address + 0x18
uint32_t WIDTH_RESERVED;
uint32_t HEIGHT; // Base address + 0x20
uint32_t HEIGHT_RESERVED;
uint32_t STRIDE; // Base address + 0x28
uint32_t STRIDE_RESERVED;

};

Fig. 2. An example of a register map data structure for a processing block that reads an image from memory and converts it to an
FPGA internal stream.

structure to provide more readable code and type safety. To access the registers, the physical address range has to be
mapped to the virtual memory space of the node. This is achieved by using the mmap system call and the /dev/mem

character device and casting the returning pointer to the appropriate data structure as shown in Fig. 2.
The buffers created with the CMA allocator consist of two addresses: a physical and a virtual. The node passes the

physical address to the registers of the processing block in the FPGA and uses the virtual address to access the buffers
for reading and writing data itself. Loading data into the FPGA works by writing data to the virtual address of the buffer
and flushing the cache to make the FPGA aware of the changes to the address by the ROS node.

Regarding the ROS functionality, the node subscribes to and publishes topics as usual via Publishers and Subscribers.
When data is received, the registers of the processing block are set accordingly and the buffers are allocated if needed
and filled. It then starts the processing, waits for the FPGA to complete its calculations and publishes the calculated
results on a ROS topic. This allows other nodes to use the FPGA to offload computationally expensive tasks.

For example, in our reference implementation the FPGA node subscribes to a camera topic and fills the buffer with
images. After starting the FPGA calculations by setting the appropriate AP_CTRL signals (Fig. 2), the embedded CPU
waits for the AP_DONE signal from the FPGA. Only then should the cache be invalidated by the appropriate CMA
function to make the changes available to the CPU, after which the FPGA accelerated node can access the processed
image at the virtual memory address. The actual output data of the algorithm is available through registers, since it
only consists of a small set of values.

Due to the usage of the ROS infrastructure, an FPGA node can be replaced by a software prototype in early stages of
the development to evaluate the functionality. When the prototype is implemented, the real hardware can be used in a
hardware-in-the-loop scenario to verify the expected behavior: Simulation and visualization tools provided by ROS can
be used for hardware verification during the process of adapting the prototype to hardware accelerated code.

4 REFERENCE IMPLEMENTATION

To demonstrate the performance and flexibility of ReconfROS, we implemented a reference algorithm in software and
hardware. The goal is to accelerate an image-based trail detection algorithm on an FPGA and use the result for motor
control of an UGV to autonomously follow a trail.

4.1 Hardware Setup

Our UGV, "Ceres", is based on the Volksbot platform [26] with ROS support for motor control [6]. It is equipped with a
"PYNQ-Z2" FPGA board based on the Xilinx Zynq XC7Z020 SoC for hardware acceleration. The SoC consists of an ARM
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Fig. 3. Image processing pipeline. The steps in the black boxes correspond to the original implementation. The removal of fragments
was replaced with morphological operations to allow efficient computation on the FPGA.

processor to launch the FPGA-accelerated ROS node and the communication between the FPGA and ROS. Additionally,
an Intel NUC (NUC6i7KYK with Intel i7-6770HQ) is integrated for pure CPU-based reference implementations. This
computer runs the ROS master and is therefore the central communication platform between all components in the
system. For the algorithm, only a camera is needed, which was attached to the front of the robot. Since the UGV is
intended to follow the trail autonomously, the motor driver is integrated into the ROS workspace and controlled by a
dedicated navigation node that processes the results of either the FPGA-based trail detection algorithm, or the reference
implementation in software.

4.2 Basic Algorithm

The trail detection algorithm is based on [1] and adapted as shown in Fig. 3. In the first step of the pipeline, Gaussian
blur filtering is applied to reduce noise and produce more consistent results in the following parts of the algorithm. For
path recognition, pixels that belong to this trail are transformed to white and others to black in the next two steps of
the pipeline. The basic idea is to detect pixels that belong to the surrounding areas of the path, which mostly consist
of green content. As shown in Fig. 3, the considered trail has a higher brightness compared with the surrounding
environment after the green pixels have been removed. All pixels above a defined threshold are considered as part
of the path and are marked white. These pixels are then used to extract the outer contour of the trail. At this point,
the new algorithm differs from the original one (marked blue in Fig. 3). Typically, binary thresholding is effective, but
leaves two types of fragments: holes inside of the path, and patches outside of the path that can significantly alter the
calculated driving angle. To resolve this issue, in the original version of the algorithm, contours are extracted from the
threshold image and only the largest is assumed to be the path.

Since this a complex operation not suitable for FPGA implementation, we remove the unwanted pixels using
morphological operations. Holes are removed using the closing operation and small clusters outside of the path are
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Fig. 4. Comparison of the results of the original algorithm (red) and the algorithm with our modifications (blue). The generated
control signals differ slightly, but still deliver safe results to control the Ceres UGV.

thinned out by the opening operation. This also leads to a more uniform path contour. In the last step of the pipeline,
the positions of the trail pixels are averaged on a fixed number of horizontal lines. These averages can be considered as
ideal waypoints for the robot to follow. Based on the weighted sum of these points, the optimal driving angle can be
derived. The direction of movement for the robot calculated this way is visualized blue arrow in the lower right image
of Fig. 3. Additional examples are provided in a supplemental video 1 and the experimental results section.

4.3 FPGA Integration

For parameter-tuning, a pure software prototype was implemented and tested in a simulated environment. Using
recorded data and the simulation software Gazebo in combination with ROS’ dynamically reconfigurable parameters,
the parameterization process was significantly sped compared to parameterization on the FPGA SoC directly. Thanks to
the standardized interfaces of ROS, the different execution environments could be exchanged easily. The main advantage
of using the simulation is that all main components can be tested, including the navigation node itself. Almost all steps
of the software version of the trail detection algorithm are implemented using functions from OpenCV. An advantage
of the introduced adaptation of the original algorithm in this paper is that all major steps can be implemented using
high-level synthesis using the Xilinx HLS Video Library [28].Regarding the optimization of the hardware accelerator,
each processing step from Fig. 3 was optimized following standard high-level synthesis techniques. Furthermore, the
high-level synthesis was directed to fully pipeline these steps, resulting in a high-throughput implementation. Both the
hardware accelerated and the software implementation were tested in Gazebo and ROS bagfiles with reference camera
data to ensure that worked as expected for a real navigation task on Ceres.

5 EXPERIMENTAL RESULTS

To evaluate the ideas of ReconfROS, we analyze the path detection algorithm discussed in the previous section with
respect to deviations from the original results due to our modifications, run time performance and power consumption.
All experiments concerning power and performance were conducted using the modified version in of the algorithm to
ensure comparability. For that, we also implemented a software version of the modified algorithm and verified that
both versions produce the same results. The measurements of the software implementation were performed on the
Intel NUC of the Ceres robot, while the FPGA-accelerated implementation was tested on the PYNQ-Z2 board.

1https://youtu.be/WSk_ug7hgkQ
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Table 1. Available resources on the FPGA and used quantities of our hardware implementation.

Resource Available Utilized Utilization [%]
LUT 53200 13750 25.8
LUTRAM 17400 854 4.9
FF 106400 15148 14.2
BRAM 140 35.5 25.4
DSP 220 78 35.5
BUFG 32 1 3.1

Table 2. Runtime and power consumption measurements of the algorithm in software and hardware.

Runtime Power Consumption
Average [ms] Maximum [ms] Idle [W] Running [W] Difference [W]

Software 52.352 73.573 18.5 21.8 3.3
Hardware 18.422 40.780 1.8 2.4 0.6

5.1 Comparison with the Baseline Algorithm

Two example frames from the recorded images used to control the Ceres robot are shown in Fig. 4. They show two
situations where the UGV approaches the trail border and needs to adjust the steering direction. The arrows indicate the
results by pointing to the calculated weighted average on the 𝑥-coordinate while fixing 𝑦, thus depicting the direction,
in which the correction signal is produced. The direction signals generated by the original algorithm are drawn in red,
those computed by the FPGA-adapted version are marked blue. In the first image, the robot is driving towards the left
trail border, so the algorithm sends a steering command to the right. An inverse situation for the right trail border
is shown in the right image. Although we replaced the fragment removal method, the generated steering signals do
not significantly differ. In both implementations, the robot is able to reliably follow the path, although the original
algorithm generally produced stronger turn signals resulting in “sharper” movements.

5.2 Usage of FPGA Resources

Tab. 1 shows how much of the available resources on the FPGA were utilized by the hardware implementation of the
algorithm. The utilization shows that the FPGA on the PYNQ-Z2 offers sufficient headroom for further extensions or
algorithmic improvements. Since ReconfROS allows for an easy exchange of the utilized SoC, a suitable device can be
chosen, if more resources are needed to match the performance and resource requirements of the problem at hand.

5.3 Runtime

The runtimes of the implementation both in software and hardware were measured using one run of the same ROS bag
file containing a raw image stream. The resolution was 1280×720 px. Tab. 2 shows the measured average and maximum
runtime of the algorithm in software and hardware. The numbers indicate that, on average, the algorithm ran almost
three times faster in hardware. Furthermore, the maximum runtime of one iteration of the algorithm in software was
almost two times longer compared to hardware. Further testing showed that to run as fast as in hardware, the input
image resolution needs to be less than 50% in both dimensions for the software implementation. So the prototypical
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hardware implementation allowed us to compute higher resolution images in shorter time in this proof-of-concept
application.

5.4 Power Consumption

The second advantage of implementing algorithms directly in hardware is the significantly reduced power consumption.
Tab. 2 shows the measured power consumption of the trail detection algorithm in software and in hardware For
comparison, the power draw was measured in two scenarios for each system: idle and power draw with the algorithm
activated. The reported difference between these values therefore reflects the additional power draw of the algorithm
itself. In summary, using hardware-accelerated code, we were able to reduce the total consumed power by about 80%.
More than 15 times less energy is needed to process one frame with the FPGA-accelerated ROS node. While the pure
software implementation draws 0.172 J, the hardware implementation draws just 0.011 J of energy per frame.

6 CONCLUSION

We presented ReconfROS, a platform that combines the advantages of both ROS and reconfigurable SoCs. The easy
management of different components of a robot system, for example various sensors, a navigation system or actuators,
can be accomplished with ROS nodes, messages and topics. More importantly, computationally intensive, especially
parallelizable algorithms in the system can be implemented in hardware. We demonstrated and tested our platform
with a typical robotics use case. By using ReconfROS, the algorithm can be executed both significantly faster and more
energy efficient.

Our approach is applicable to many more robotics algorithms and different reconfigurable SoCs matching specific
algorithmic requirements. Ideally, in the scope of larger robotics problems, multiple algorithms could be accelerated in
hardware at the same time, a method that has only been briefly discussed in this paper. To expand our ideas presented
in this paper further, we are working on the implementation of a TSDF-based simultaneous localization and mapping
(SLAM) challenge using ReconfROS methods on a more powerful SoC.
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