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We present an approach for computer-aided generation of different variations of
floor plans during the early phases of conceptual design in architecture. The
early design phases are mostly characterized by the processes of inspiration
gaining and search for contextual help in order to improve the building design at
hand. The generation method described in this work uses the novel as well as
established artificial intelligence methods, namely, generative adversarial nets
and case-based reasoning, for creation of possible evolutions of the current
design based on the most similar previous designs. The main goal of this
approach is to provide the designer with information on how the current floor
plan can evolve over time in order to influence the direction of the design process.
The work described in this paper is part of the methodology FLEA (Find, Learn,
Explain, Adapt) whose task is to provide a holistic structure for support of the
early conceptual phases in architecture. The approach is implemented as the
adaptation component of the framework MetisCBR that is based on FLEA.
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INTRODUCTION
During the early phases of conceptual design in ar-
chitecture, designers often look for past references in
collections of printed or digitally created floor plans
in order to stimulate creativity and inspiration and as-
sess the building design at hand or find explicit so-
lutions. The outcome of the early phases has a big

impact on the future direction of the currently de-
veloped design. The most obvious way to support
these phases with computer-aided means is to pro-
vide a retrieval method (e.g., in the form of a spe-
cific software solution) that is able to find similar ref-
erences in a collection of previously created building
designs. A multitude of approaches was developed
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for this task in thepast, for example, using case-based
retrieval (Richter 2011) or deep learning (Sharma et
al. 2017). However, not only the retrieval of sim-
ilar designs can help find inspiration: a generation
of different design variations, based on the original
and the similar designs, can show how the design
would evolve over time, providing the designer with
a choice of how to influence the current design direc-
tion. In this paper, we present an approach for gen-
eration of such design evolutions. The approach is
based on the currently widely used machine learn-
ing techniques, such as convolutional neural networks
(ConvNet) and case-based reasoning (CBR) (Kolodner
2014).

While a number of architectural design evolution
approaches was developed in the past decades as
well – mostly using genetic evolutional algorithms
(Flack and Ross 2011; Nisztuk and Myszkowski 2019),
but also, for example,mobile crowdsourcing andmo-
tion sensor data (He et al. 2017) or bayesian net-
works (Merrell et al. 2010) – none of them was cre-
ated specifically for the early design phases. Further-
more, none of the currently existing methods is an
autonomous part of a framework or methodology
that implements the evolution approach as one of its
collaborative components.

The implementation of our approach is part of
the FLEA (Find, Learn, Explain, Adapt) methodology
for support of early conceptual phases in architec-
tural design. Building designs in FLEA are repre-
sentedby the roomconfigurationsof floorplans in the
form of graphs with rooms as nodes and room con-
nections as edges (see figure 1). FLEA was derived
from the original 4R (Retrieve, Reuse, Revise, Retain)
cycle of CBR (Aamodt and Plaza 1994). The compo-
nents in FLEA are autonomous and can be combined
in order necessary for the current task. Below, a short
overview of the components is provided.

• Find applies methods of CBR-based retrieval
to find the most similar designs for the cur-
rent roomconfigurationbymeansof applying
the semantic fingerprints of architecture, the
graph-based patterns for representation and

search of floor plans (Langenhan and Petzold
2010). The fingerprints can be selected by the
user to personalize the retrieval process and
make it more precise.

• Learn suggests the next steps for continu-
ation of the current room configuration de-
sign process. The steps represent the most
common actions, such as add (including the
room type and position suggestion), remove,
reshape, or change type of a room. The mode
of operation of this component is based on
the specific contextual recurrent neural net-
works that represent automatically detected
floor plan contexts based on their features.

• Explain applies explanation pattern-based
methods for (contextual) explanation of re-
trieval results achieved during the execution
of the Find step. Themain goal of Explain is to
build trust between the user and the system
by justifying the returned search results and
make the system behavior during the search
more transparent (Eisenstadt et al. 2018).

• Adapt generates variations of the current
room configuration and shows how it can
evolve in the future. Described in this work.

FLEA is implemented in MetisCBR (Ayzenshtadt et al.
2016), a distributed AI framework that assigns the ex-
ecution of the four steps described above to the au-
tonomous entities, i.e., agents, combining them into
a multi-agent system (MAS).

FLOOR PLAN ADAPTATION APPROACH OF
FLEA
The generation of different variations of a room con-
figuration can also be seen as adaptation of the orig-
inal design to the current task context (e.g., a revision
of design of an apartment for an elderlymarried cou-
ple). Similarly, we can assume that the task context
is part of the specific problem space (e.g., design of
apartments). The component Adapt of FLEA makes
use of these two assumptions, i.e., it is based on the
Reuse step of the 4R CBR cycle, whose basic premise
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Figure 1
An example of a
room configuration
used in the
implementation of
the FLEA
methodology.

is that a problem that fits to the given problem space
can be solved by a solution taken and adapted from
the most similar case (problem + solution) from the
database of the past cases (the case base).

In general, two basic approaches of adaptation
exist in CBR: transformation-based and generative
(Wilke and Bergmann 1998). The transformation-
based approach requires knowledge about adapta-
tion process, i.e., the exact algorithm, but does not
require knowledge about acceptable solutions and
does not guarantee the correctness of the produced
solution. The generative approach requires knowl-
edge about acceptable solutions, but must contain
the solution path within the case. FLEA applies
the transformation-based approach, as knowledge
about acceptable solutions is not available in the ar-
chitectural design domain per se, as every designer
has her/his own criteria and requirements on qual-
ity of the designs. Specifically for design cases, it is
also not feasible to include the exact solution path
into the case, as the number of these paths for the
samedesign is as high as the number of possible con-
tinuations of the floor plan configuration. Therefore,
the transformation-based adaptation and the corre-
sponding generation of variations appears to be a
more suitable approach for the floor plan cases.

To accomplish the task of adaptation of graph-
based floor plans, FLEA’s Adapt makes use of combi-
nation of both subtypes of the transformation-based
adaptation: substitution and structural modification.
The substitutional adaptation replaces the features
(e.g., available connections of the room configura-
tion) of the case with those of the selected solutions
that are representedby themost similar roomconfig-
urations from the case base. The subsequent struc-
tural modification phase is then used for addition of
new or removal of existing features (e.g., rooms or
their types).

Technically, our approach is based on a combi-
nation of Generative Adversarial Nets (GAN) (Goodfel-
low et al. 2014), and case-based retrieval (De Man-
taras et al. 2005) (see section “Generator” for usage
details). GAN is a methodology for neural network-
based generation of new objects (e.g., images). GAN
received much acceptance in the machine learning
community during the last years and usually consists
of two separate networks that compete against each
other: the Generator network creates/generates ob-
jects, whereas the Discriminator network rates these
objects and decides if they correspond to the crite-
ria of a “real” object (e.g., an image that would ap-
pear real to a human). Our approach modifies the
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original GANby adding a newnetwork, theClassifica-
tor (see section “Classificator” for more details). The
three modules and their common data representa-
tion are described in the next sections. In figure 2,
the complete process of GAN- and CBR-based adap-
tation of room configurations is shown in detail.

Data representation
The room configurations in our adaptation approach
are representedby a connectionmapof the floorplan,
an approach similar to architectural morphospaces
(Steadman and Mitchell 2010). Each map represents
a modified adjacency matrix of the room configura-
tion’s graph, where instead of weights, a specific con-
nection code is used to represent relations between
two rooms. Each code entity is a numerical signa-
ture of the relation: the first two numbers stand for
the room types of the connected rooms and the last
number represents the connection type (e.g., Door,
Stairs, or Passage). For example, the connection code
621 stands for ‘Working and Living rooms connected
by aDoor’. Both directions, e.g., Living–>Working and
Working–>Living can be decoded, if they are con-
nected with two different room connection types.
For use in the GAN, which was originally conceptu-
alized to work with image matrices, these numbers
are then converted into the grayscale intensity values,
e.g., 621 to 0.621. Figure 2 shows an example visual-
ization of a connection map.

Classificator
This new network module extends the original GAN
structure with a specific pre-generation step, the
adaptation complexity classification. During the com-
plexity classification process, the ConvNet of the
Classificator determines the complexity grade of
adaptation: 0 (weak), 1 (middle), or 2 (heavy). This
process is necessary in order to estimate the user’s
design modification direction, i.e., to match her/his
expectation on the floor plan’s evolution. The classi-
fication basis of this network are the complexity la-
bels from the previously adapted connection maps.
In figure 2, step 1 denotes the classification process.

Generator
Depending on the outcome of the complexity classi-
fication, the Generator module adapts the incoming
map, i.e., the query roomconfiguration, using the fol-
lowing two-step approach:

1. Feature extraction with a ConvNet - During
the first step (see also figure 2, step 2), the
query map (more exactly: its grayscale im-
age representation) is fed into the Generator’s
ConvNet to undergo a process of feature ex-
traction. The outcome of this process is an n-
dimensional tensor that represents the image
features. Currently, a VGG 16-based ConvNet
(Simonyan et al. 2014) is in use.

2. Case-basedmergewith the casemaps - The
query map is then merged with a number of
the most similar previous connection maps
(case maps) saved in a specific case base.
Each previous map represents a case with ex-
tracted features as attributes used to determine
the similarity with the query map. The merge
algorithm then performs the substitutional
and structural modification according to the
requirements of the complexity grade: weak
adaptation only adds connections that do not
exist in the querymap, heavy adaptation adds
connections from the case map and replaces
the ‘overlapping’ connections with its own,
middle replaces the overlappings only partly.
See also figure 2, steps 3 and 4.

Discriminator
Finally, after the adaptation merge has been per-
formed, the Discriminator network, trained on the
previously merged examples, classifies the created
variations of the originalmap as true or false, i.e., de-
cides if a map is a possible real continuation of the
current room configuration. If the user accepts the
suggested continuation, it is then added to the com-
mon case base andmarked as a successor of the cur-
rent room configuration in its case tree. See also fig-
ure 2, steps 5 and 6.
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Figure 2
FLEA adapation
approach for room
configurations. The
numbers in bold
font denote the
particular steps of
the variation
generation process.
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EVALUATION
To evaluate the adaptation approach described in
this work, the datasets of 15000 training + 3000 test
examples for the Classificator and 10000 training +
2000 test examples for the Discriminator were syn-
thesized with a specific connection map generation
algorithm that can create maps with different and
randomized density, i.e, the number of connections.
Both, Classificator and Discriminator, used a con-
figuration based on 2 convolutional layers and the
Nadam optimizer (Dozat 2016). Another set of 100
connection map examples with maximum connec-
tion count of 144 was generated for querying and
modifying, each of these maps was adapted with 10
most similar designs. The classification accuracy of
the Classificator could reach approx. 93%. The Dis-
criminator could classify approx. 95% of generated
variations as true with approx. 94% as classifica-
tion accuracy. The evaluation has shown that our ap-
proach is generally suitable for room configuration
evolutions and can be used as a module of the FLEA
methodology implementation.

FUTUREWORK
Future plans for the adaptation module of FLEA in-
clude an extension of the current merge algorithm
with a stepwise evolutionary adaptation of connec-
tion maps with densities of large difference and a
subsequent user study.
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