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ABSTRACT
We present work in progress focusing on an extension of a 24/7
monitoring system for persons at cardiac risk, a system that allows
patients to move freely in and outside of clinical se�ings. �e
system consists of a comprehensive sensor patch, a relay and a
monitoring center sta�ed with clinicians and doctors. Detected
anomalies may trigger escalation plans which include activating
families, ambulances and clinics. In order for the system to scale up,
we demonstrate how anomalies can be automatically detected using
machine learning technologies. We describe and evaluate a classi�er
for detection of Ventricular Extrasystoles. �e classi�er has been
tested on real-world sensor data as well as a standard ECG database
and achieves varying recognition rates, depending on many factors.
�e next steps include an improvement of the detection algorithm,
especially its training methods, and introducing the extension into
the telemonitoring centre, thus evaluating the user acceptance
amongst the cardio experts.
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1 INTRODUCTION
Cardiovascular disease (CVD) is the second-most expensive health
condition in the western world. In Europe alone, CVD causes 3.9
million deaths which corresponds to over 1.8 million deaths in the
European Union (EU). �is translates to 45% of all deaths in Europe
corresponding to 37% of all deaths in the EU [2].
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Patient’s desire to rather stay in their accustomed environment
than in the hospital and the costs for the healthcare system accompa-
nied thereby have been driving the development of computational
methods in CVD diagnostics, such as prognostic risk scores to pre-
dict mortality and re-hospitalization rates in clinical environments,
for example [46], [19], or [31]. It has been shown, however, that
these models derived from �xed data sets, are o�en limited in their
prediction value on new data [3]. Missing values are a common
problem, as they expect certain demographic or medication infor-
mation to be available, and their statistical background most o�en
means they are concerned with stratifying over larger groups of
patients. �erefore, their ”reliability at the individual patient level
is known to be very poor” [6].

In this paper, we present work in progress extending an inno-
vative telemedical system that monitors individual patients with
CVD-related risks. �e system not only allows monitored patients
to move around freely in their daily environments, but it also in-
creases the degree of a�ention devoted to each patient. Because
of the 24/7 character of the service in combination with living ”a
normal life”, new insights into the �eld of CVD are possible.

Progression of CVD or the risk for a patient to develop such is
re�ected in the vital parameters [7]. �e electrocardiogram (ECG)
yields information about the electric activity of the heart. A nor-
mal heart cycle in the ECG is depicted in Figure 3. Origins and
conduction pathways of the heart’s electric self-stimulation can be
approximated from the ECG but also their pa�erns reveal how crit-
ical a deviation from the normal heart cycle is. �e ECG indicates
life-threatening heart arrhythmias and enables a calculation of risk
factors for CVD, such as low heart rate variability [9, 13] and high
heart rates [10].

For detection of CVDs, other parameters such as changes in
blood pressure [45] or - if the absolute blood pressure is known -
cardiac output [47] can be derived from pulse wave measurements.
Furthermore, it is important for interpretation of pa�erns to view
vital parameters in connection with the patient’s current physical
activity, which can be regarded as a vital sign itself [25] and is
measured with heat-related sensors, accelerometers or heart rate
information [43].

�e paper’s core contribution is an extension of the existing
technical setup. We suggest a machine learning approach for the
detection of anomalies in the ECG. �e extension supports the
cardiac experts in that it automatically signals pathological pa�erns
in the ECG, increasing the accuracy of the complete monitoring
system and allowing for scaling up the system. As this stepwise
addition is work in progress, we exemplify the approach in a proof
of concept, the detection of ventricular extrasystoles (VES).
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Figure 1: �e electrical signals from the interchangeable electrodes connected to the patch (le� picture) are removed from a
medical device and powered by a battery pack. A�er �ltering the signals, the communication device (le� �gure) transmits
the data to a �le server via GSM/Internet. �ere, data is stored for further processing. A�er the necessary calculations and
transformations, the information is available for visualisation in a telemonitoring centre (right picture).

Figure 2: Excerpts from various ECG leads recorded from patients in everyday life with our wearable system: (a) Very clean
signal with little to no artifacts, also note the heart beat of VES type, (b) dropouts, which are caused by the recording sys-
tem internally or by bad skin contact of the ground electrode, (c) an electrode with bad skin contact, resulting in baseline
dri� and electrode-pop artifacts (orange: electrode-pops, dark green: baseline dri� from bad skin contact, light green: �lter-
induced baseline resulting from artifact �anks), and (d) high frequency noise from electric muscle activity, possibly during
body movement or shiver.

2 RELATEDWORK
If an ECG reveals several VESs, they will either all originate in
the same cell compound of the heart muscle (unifocal) or their
exact origin in the tissue will vary (multifocal). VESs may occur
in the healthy human without any signi�cance, but in patients
with a medical history or if present in certain ECG pa�erns their
morphology indicates cardiac risks and emergencies like ventricular
�brillation or digoxin toxicity [21]. Furthermore, higher risk for

stroke [1] and death [4] was reported for patients with frequent
VESs.

ECG pa�erns of the same type of arrhythmia highly vary between-
but also within-subject. Furthermore they can be corrupted by arti-
facts, which especially occur during movements in a stress test or
similar situations. �erefore, sparse availability of ECG data poses a
signi�cant problem to generalize research �ndings and algorithms
on a certain arrhythmia between-patients.
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Figure 3: Schematic depiction of the ECG showing a nor-
mal heart cycle. �e P wave and the heart beat represented
by the QRS complex are the impulse for contraction of the
atrium and ventricles respectively [12], followed by the T
and U wave, which show repolarization of the heart muscle
and stimulus conduction system [12, 40].

2.1 Databases
To develop ECG classi�ers, either recordings with annotations for
every heart beat must be collected from patients, who exhibit the
arrhythmia, or a database with public access can be used. In the
la�er case, the most popular might be the MIT-BIH Arrhythmia
database [15, 33], recorded late in the 1970s. �is database com-
prises 30 minutes of 2-channel recordings collected from 48 CVD
patients having several kinds of diseases, and its records are fully
annotated by two or more independent cardiologists.

�e MIT-BIH Arrhythmia database can e�ciently be used for val-
idation purposes, but this limited resource is not suitable for a data-
driven design of machine learning algorithms. Other approaches
are to merge several databases to one bigger corpus [23, 28]. �e
algorithms must then be able to manage a corpus with imbalanced
sets of ECG leads.

2.2 VES Detection
Machine learning methods such as support vector machines, linear
discriminant analysis, k-nearest-neighbours, mixture of experts,
Bayesian networks, Hidden Markov Models and decision trees are
found to be commonly applied in ECG classi�cation tasks [41].
Progress in the �eld of neural networks in recent years has drawn a
lot of a�ention towards deep learning for ECG classi�cation [41]. Li
et al. [23] have reported an accuracy of 0.9943 using convolutional
neural networks for detection of VES. Autoencoders also are a type
of neural networks and can be used to produce a feature map, which
is then classi�ed using so�max regression [48] or a random forest
classi�er [16].

�e lack of training data puts the use of neural networks for beat
classi�cation into question. �e mentioned studies trained their
classi�ers only on the MIT-BIH Arrhythmia database [16, 48] or on
multiple databases without resampling them to the same sampling
rate [23]. �us, for these classi�ers generalization is problematic
considering di�erent VES morphologies between patients and also
between ECG leads.

Robust and explainable features of VES are �rst and foremost
ratios of the RR intervals to the surrounding heart beats [8, 14,

35] and QRS or R peak width [8, 35]. A missing P wave before
the QRS complex is another important feature to medical experts.
Automatic P wave detection yet remains problematic for complex
abnormal ECG pa�erns [26, 27], since it commonly is based on
heuristic windowing and thresholding [22, 28] and o�en algorithms
are parameterized on normal ECGs and speci�c leads [22, 32].

Bayesian models were shown to reach high F1-scores of up to 0.98
in PVC classi�cation [24]. �is result must be viewed with respect
to the training set. �e authors used the MIT-BIH Arrhythmia and
split their training and test sets a�er randomly mixing all input
samples. To prevent from over��ing to a patient, the dataset should
be separated by recordings.

Classi�cation between several kinds of heart beats, all having
abnormal QRS complexes, can be done to some extent training
a neural network on the Teager-energy operator, which models
the energy the underlying source needs to produce the signal [20].
Simple thresholding of this feature was proven to be useful for
classi�cation of VES against normal heart beats [42], but it can be
assumed, that the thresholding rather classi�es between normal
and overall abnormal QRS complexes [20].

Park et al. [37] presented a review of algorithms, which are able
to detect the location in the heart tissue, where VESs originated
during idiopathic ventricular tachycardia. �is form of tachycardia
is not an emergency case [5], yet the localization of the VESs reveals
the requirements towards signal analysis, also for more severe cases
of a present VES. More precisely, due to anatomy, multilead ECG
and a feature extraction robust against unrelated alterations of the
heart tissue and electrode placement is needed [37].

3 SENSORS
Recordings of biosignals are typically corrupted by artifacts of vari-
ous technical and physiological origins [11]. Electrode movement
or electric activity from other physiological sources such as the
muscles impose high demands to the sensors and signal processing
to not cause misclassi�cations.

Artifacts from muscle contractions are commonly reduced by
asking the patient to be relaxed and avoid movements. �is holds
for clinical treatment room se�ings [11] as well as for wearables
such as the Apple Watch 4 (Apple Inc., Cupertino, USA) [17, 18].
Also, a proper skin contact of the sensor is obligatory for su�cient
signal quality. A selection of noisy ECG excerpts recorded with our
wearable system is shown in Figure 2.

3.1 State-of-the-Art Technology
Electrodes for measuring surface potentials are placed either ap-
plying electrode gel or using dry electrodes. �e gel has similar
conduction properties as the skin tissue and prevents from air pock-
ets, resulting in low electrode impedance. Drawbacks of the gel
are skin irritation in long term measurements and possible allergic
reactions from patients, while dry electrodes on the other hand
might be perceived more comfortable. Up to date, gel electrodes
are commonly preferred over dry electrodes, since they stick to the
skin minimizing electrode movement and because of their lower
impedance [29].

Increasing interest towards dry electrodes can be observed in re-
cent years, since dry electrodes o�er advantages in skin-friendliness
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Figure 4: Excerpt of one ECG signal, showing a ventricular extrasystole in lead II. �e vertical lines mark the beginning and
end timestamps of the area labeled as VES in the training data. �e extrasystole itself (here at the center of the annotation) is
easily identi�ed by its premature occurrence and deviating shape.

[30] and they can be implemented into some wearable technolo-
gies like watches more easily. Another trend of sensor research
in patient monitoring is the integration into garment. Such textile
electrodes may raise the acceptance of wearing sensors for long-
term monitoring in everyday life, but also bear the detriment of
wearout a�er a few washings and costly custom-tailoring to every
new patient to obtain su�cient electrode-to-skin contact [39, 44].

3.2 Challenges for Wearables in Monitoring
�e technical architecture of the presented portable system comes
with a number of challenges that need to be addressed. �e sys-
tem is designed to allow the patient to freely move around and
live his everyday life during ongoing measurements. Compared to
long-term monitoring in hospitals where the patient is in a rest-
ing position, the signal quality is poor, particularly we face low
signal-to-noise ratio. Artifacts occur due to dropouts in the data
transmission. Electromagnetic �elds introduce noise at the sensors.
�is is a reason for hospitals to ban mobile phones from intensive
care units [29]. Additionally, movements of the patient lead to
artifacts from muscle contractions and electrode movement. De-
spite this, algorithms have to robustly detect the QRS complex and
other waveforms to deliver base data for classi�cation algorithms.
�is is a non-trivial challenge, for instance, the state-of-art Pan-
Tompkins algorithm [36] sometimes adapts to the artifacts and fails
in adapting back to the signal in noise-free segments.

3.3 Our 24/7 Monitoring System
�e monitoring system is a complex service consisting of a technical
system which acquires, transfers and processes relevant signals
along with human sta� — cardio experts and doctors — who monitor
a patient’s sensor data.

�e technical system is divided into two parts, see Figure 1: a
patch with the medical device on the patient’s chest and a communi-
cation device, essentially a 3G or WiFi communication module, for
example a regular smartphone, which can be placed somewhere on
the body. �e dimensions and energy consumption of the medical
device are very small, ensuring continuity of the data for more than
30 hours. �e sensor se�ing within the medical device is based
on known and standardised monitoring methods for non-invasive
measurement of vital parameters and ECG from the human body
surface. �e ECG measures the electric activity of the heart and is

carried out using standard disposable ECG electrodes. It is followed
by a series of common preprocessing steps for denoising the signal,
using �rmware and so�ware to visualise the signal for the health-
care professionals. All together, the system receives, processes and
visualises biosignals from the patient, consisting of:

• ECG - up to 12 Wilson Channels (250 Hz)
• SPO2 (oxygen saturation) - Range 70% to 100%
• Breathing information
• Body temperature - accuracy 0.05 °C
• Trend of systolic and diastolic blood pressure
• Position and activity of the body

In case of anomalies and critical situations, the control centre will
invoke an escalation plan that may, for instance, involve contacting
relatives, calling an ambulance and preparing hospitals.

4 VES DETECTION
Given their relative distinctiveness in a typical ECG signal, classi�-
cation of VES serves as a proof of concept for further, more complex
pathologies.

4.1 Data
CheckPoint Cardio provided 15 anonymised ECG records with
a sampling rate of 250 Hz, spanning 6 to 12 channels each, the
shortest comprising just about 30 seconds and the longest almost
six hours of data. �e recordings were chosen for the occurrence of
extrasystoles within them, with no further annotations regarding
potential other anomalies. All records are annotated with start and
end positions of VES, spanning over one or several heartbeats, as
shown in �gure 4. �e mean duration of these annotations is 1.5
seconds, with about a thousand annotated ranges overall. In total,
we detect 60034 heartbeats in the data, of which 1016 are marked
as VES, that means about 1.7% of the signal are positive examples.

For additional evaluation, we used data from the MIT-BIH Ar-
rhythmia database [33]. �e records in this dataset each contain
two 360 Hz channels which may di�er from record to record. Two
records could not be used: 102 and 104 which had to be le� out
because they were the only ones not containing a lead II signal used
to derive amplitude-related features. For our purposes, the PVC
annotation (Premature Ventricular Contraction) served as ground
truth marker. Here, annotations are not stored as ranges containing
extrasystoles, but single heartbeats are marked as PVC. In total,
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there are 7124 heartbeats derived as PVC from the used records,
out of 105546 detected R peaks, that means about 6.7% of the signal
are positive examples.

4.2 Preprocessing
�e foremost indicator of a VES is a shortened RR interval in com-
parison to the normal pulse. Additionally, these premature QRS
complexes can di�er in size and shape from typical ones, they are
usually larger and wider. �is knowledge has been implemented
for the derivation of meaningful classi�cation features.

We abstract the individual samples to classi�cation instances
based on single heartbeats. Our QRS detection algorithm is based
on the principles of the Pan-Tompkins algorithm and modi�ed to
be more robust against noise. �e detector was tested on recordings
from the MIT-BIH Noise Stress Test database [15, 34] with signal-to-
noise ratios reaching from -6 to 24 dB. Our detector outperformed
our basic implementation of the Pan-Tompkins algorithm, as well
as QRS detectors from the WFDB package provided via PhysioNet
[15, 32], namely ecgpuwave, gqrs, sqrs and wqrs.

Individual heartbeats make up the classi�cation instances, with
every detected R peak regarded as the focal point of a beat spanning
a �xed amount of time (600 ms to the le� and 500 ms to the right).
Ground truth is derived from the annotations. In case of VES ranges,
a heartbeat is a positive instance if most of its samples lie within
the range annotated as VES. In case of single samples marked as
PVC, a heartbeat is a positive instance if it contains the sample
marked as PVC near the detected R peak.

A�er some experiments, the number of features could be reduced
by eliminating redundant or useless information. Candidates have
been identi�ed by studying which features the classi�ers found
useful and which ones correlate with each other and/or the target
variable.

Amplitude-based Features As the value ranges even of the
same ECG channel between di�erent datasets can di�er, working
with absolute values proves di�cult when using the amplitude of
the signal as a feature. We thus derive local relative values in order
to detect heartbeats of deviating size. From each instance, lead II’s
relation between its maximum amplitude and mean amplitude is
derived as feature AMPMAX, as well as MAXFROMMEAN, the
largest di�erence in either direction between any sample and the
heartbeat’s mean amplitude. �ese values target the property of
VES to show a shape di�erent to that of regular QRS complexes.

R-peak-based Features From each heartbeat, �rst its RRD is
computed, its R peak’s distance to the previous R peak in seconds,
and used to derive further features, namely the relation of the
heartbeat’s RRD to the RRD mean over the record and to the previ-
ous heartbeat’s RRD. �ese features aim to identify shortened RR
intervals in comparison to a regular pulse.

4.3 Classi�cation
For classi�cation, a RandomForestClassi�er as provided by the
scikit-learn package [38] is trained on the derived features. We use
75 estimators and leave the remaining options at the default values.

A Random Forest o�ers the advantage that its inner workings
can be inspected and understood quite easily, for example it can
provide information about which features are most important for its

classi�cation decision. �is is helpful when selecting features, but
also to explain what the model is looking for in the data, satisfying
the recent demand of explainable AI, especially in medical contexts.

Unsurprisingly, the most useful features identi�ed by the classi-
�er rely on the RRD, con�rming the expectation that extrasystoles
are most easily identi�ed by a shortened RR distance.

4.4 Evaluation
For evaluation, a custom leave-one-record-out technique has been
implemented in which the classi�er is trained on all but one records
in one database and tested on the remaining one each time. �is is
done to ensure that a classi�er trained on a collection of records
can be used to detect VES even in data from a previously unseen
record. For each of the experiments, a confusion matrix and fur-
ther evaluation metrics are derived. In the end, these �ndings are
combined into a complete report. Additionally, a cross-test be-
tween both databases has been performed, training on all records
of one and testing on all of the other. �e confusion matrices for
all experiments are shown in �gure 5.

�e evaluation results vary strongly between di�erent databases
and even records. �e best results are achieved when training on
the MIT-BIH Arrhythmia data and applying the classi�er to the
CheckPoint Cardio data, with almost no misclassi�cations. �e
opposite, however, using a classi�er trained on CheckPoint Cardio
data on the MIT-BIH Arrhythmia, yields far less success with a
good amount of the instances classi�ed as normal when they are
in truth VES and only very few correct detections. Training and
testing on di�erent records from the same dataset yields di�erent
results depending on the record, the �gure shows the averaged
results.

On a closer inspection, the reasons for this become clear: Not
only can VES di�er in their properties from record to record, but also
individually - regardless of noise and artifacts, extrasystoles come
in many di�erent shapes which o�en deviate from the prototypical
form (see 6).

Another problem both in training and evaluation are annota-
tions and their di�erent formats. When deriving a heartbeat-based
ground truth from ranges, the surrounding beats are o�en by de�ni-
tion marked as extrasystoles as well, leading to confusing training
data for the classi�er and wrong information used in the evalua-
tion phase. While more training examples can counter this e�ect
in training, it becomes a problem when detecting extrasystoles in
unseen data, leading to false negatives. Also, as the annotations are
created by manual work they are not guaranteed to be correct in
the �rst place. Some of the false positives show, on closer inspec-
tion, all signs of VES without having been annotated as such (see
7). To optimize and evaluate the true performance of a classi�er, a
uni�cation and correction of the annotations will be done in the
future.

5 DISCUSSION AND FUTUREWORK
We have presented ongoing work in extending a human-sta�ed
remote 24/7 monitoring system for persons su�ering from cardio-
vascular diseases, a system that has been up and running for several
years. �e system promises a higher degree of monitoring than
what is possible even in clinical se�ings.
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(a) (b) (c) (d)

Figure 5: Confusion matrices for all four major experiments. (a) Averaged results of training on all but one record from the
MIT-BIH Arrhythmia, testing on the remaining, (b) results of a classi�er trained on the MIT-BIH Arrhythmia, testing on the
CheckPoint Cardio set, (c) averaged results of training on all but one record from the CheckPoint Cardio set, testing on the
remaining and (d) results of a classi�er trained on the CheckPoint Cardio set, tested on the MIT-BIH Arrhythmia.

(a) (b) (c)

Figure 6: Examples of atypical extrasystoles. (1) ”VES”-annotated range centered between two normal heartbeats, (2) PVCwith
negative peak and (3) unclear behavior.

(a) (b)

Figure 7: Examples of problematic annotations. (1) Instance classi�ed as VES but annotated as normal (due to an annotation er-
ror) and (2) instance classi�ed as normal but annotated as VES (due to the next one being a VES and the range of the annotation
overlapping).

However, there remains a major challenge: even with the techni-
cal se�ing, the monitoring personnel misses anomalies in particular.
Our extension targets exactly this: introducing an automatic classi-
�cation layer in the technical architecture that supports personnel
by highlighting anomalies, thus steering their a�ention to relevant
parts of the signal. �is extension simultaneously addresses scala-
bility: a cardiac expert can theoretically monitor a more patients
simultaneously. �e combination of sensor data, human monitoring
and a detection layer in between has the potential to become a very
powerful monitoring service that in the future will save lives and
increase quality of life for persons at cardiac risk.

As a proof of concept, we have presented an automatic detection
method for ventricular extrasystoles developed and tested on real-
world data. Data recorded from wearables is challenging in that it
contains a lot of artifacts normally not present in clinical se�ings
where patients typically are laying still. Another major problem is
the individuality of biosignals, leading to cross-database and even
cross-record classi�cation problems for pathologies deviating from
the prototypical shape.

�e �rst improvement will concern the annotations, so that
optimal training and reliable evaluation become possible on the
available data. �is might require a manual overhaul of the whole
dataset, checking each annotation for correctness and adding po-
tentially missed extrasystoles, for which a custom annotation tool
is being created.

In the future, we will address improvements on the detection of
ECG waveforms, especially tackling issues of detection sensibility
and robustness against noise peaks. Clearly, this is a key factor
not only for the improvement of VES detection, but any anomaly
detection in general. VES are a less complex anomaly both when
it comes to detection as well as their consequences: extrasystoles
are typically not an emergency case. However, in addressing more
critical conditions, the whole modus operandi in the telemonitoring
centre has to be adapted accordingly.

In order for the classi�ers to become more robust, they need to be
trained on much more data, ge�ing used to the various shapes of the
pathology to detect. To test on a bigger noise-corrupted corpus, the
automatic detection has to be introduced into the telemonitoring
centre and evaluated under working conditions. We expect that the
introduction of the automatic classi�cation will lead to adaptation
of the working instructions. �e current situation has been based
on the assumption that the cardiac experts are solely responsible
for the detection of the anomalies.

ACKNOWLEDGMENTS
We would like to thank Boris Dimitrov from Checkpoint Cardio for
coordination and his support in the project.

REFERENCES
[1] Sunil Agarwal, Gerardo Heiss, Pen�i Rautaharju, Eyal Shahar, Mark W Massing,

and Ross J Simpson. 2010. Premature Ventricular Complexes and the Risk of



Towards Automatic Pathology Classification for a 24/7 ECG-based Telemonitoring Service iWOAR, September 2019, Rostock, Germany

Incident Stroke �e Atherosclerosis Risk In Communities (ARIC) Study. Stroke;
a journal of cerebral circulation 41 (02 2010), 588–93. DOI:h�p://dx.doi.org/10.
1161/STROKEAHA.109.567800

[2] European Heart Network AISBL. European Cardiovascular Disease Statistics
2017. h�p://www.ehnheart.org/cvd-statistics.html. (��). Accessed: 2019-08-31.

[3] Massimo Iacoviello Domenico Scrutinio Andrea Passantino, Francesco Monitillo.
2015. Predicting mortality in patients with acute heart failure: Role of risk scores.
World Journal of Cardiology 7(12) (2015), 902–911. DOI:h�p://dx.doi.org/10.4330/
wjc.v7.i12.902

[4] Feven Ataklte, Sebhat Erqou, Jari Laukkanen, and Stephen Kaptoge. 2013. Meta-
Analysis of Ventricular Premature Complexes and �eir Relation to Cardiac
Mortality in General Populations. �e American journal of cardiology 112 (08
2013). DOI:h�p://dx.doi.org/10.1016/j.amjcard.2013.05.065

[5] J. Brugada and D. Perez Diez. 2010. How to recognise and manage idiopathic
ventricular tachycardia. e-Journal of Cardiology Practice 8 (2010).

[6] Chioncel O Laroche C Crespo-Leiro MG Coats AJS Mebazaa A Piepoli MF Tavazzi
L Maggioni AP; ESC HF Long Term Registry Investigators Canepa M, Fonseca C.
2018. Performance of Prognostic Risk Scores in Chronic Heart Failure Patients
Enrolled in the European Society of Cardiology Heart Failure Long-Term Registry.
JACC: Heart Failure 6(6) (2018), 452–462. DOI:h�p://dx.doi.org/10.1016/j.jchf.
2018.02.001.

[7] Gabriella Casalino, Giovanna Castellano, Vincenzo Pasquadibisceglie, and Gi-
anluca Zaza. 2018. Contact-Less Real-Time Monitoring of Cardiovascular Risk
Using Video Imaging and Fuzzy Inference Rules. Information 10 (12 2018), 9.
DOI:h�p://dx.doi.org/10.3390/info10010009

[8] Ik-Sung Cho and Hyeog Kwon. 2013. PVC Classi�cation Algorithm �rough
E�cient R Wave Detection. Journal of Sensor Science and Technology 22 (09 2013).
DOI:h�p://dx.doi.org/10.5369/JSST.2013.22.5.338

[9] Helen Colhoun, Darrel Francis, Michael Rubens, Stephen Underwood, and John
H. Fuller. 2001. �e Association of Heart-Rate Variability With Cardiovascular
Risk Factors and Coronary Artery Calci�cation A study in type 1 diabetic patients
and the general population. Diabetes care 24 (07 2001), 1108–14. DOI:h�p:
//dx.doi.org/10.2337/diacare.24.6.1108

[10] S. Cook, M. Togni, M. C. Schaub, P. Wenaweser, and O. M. Hess. 2006. High heart
rate: a cardiovascular risk factor? European Heart Journal 27 (2006), 2387–2393.
DOI:h�p://dx.doi.org/10.1093/eurheartj/ehl259

[11] J. Crawford and L. Doherty. 2012. Practical Aspects of ECG Recording. M&K
Update Ltd.

[12] Daniel E Becker. 2006. Fundamentals of Electrocardiography Interpretation.
Anesthesia progress 53 (02 2006), 53–63; quiz 64. DOI:h�p://dx.doi.org/10.2344/
0003-3006(2006)53[53:FOEI]2.0.CO;2

[13] Breno Farah, Mauro Barros, Babu Balagopal, and Raphael Ri�i-Dias. 2014. Heart
Rate Variability and Cardiovascular Risk Factors in Adolescent Boys. �e Journal
of pediatrics 165 (08 2014). DOI:h�p://dx.doi.org/10.1016/j.jpeds.2014.06.065

[14] C. L. Feldman, P. G. Amazeen, M. D. Klein, and B. Lown. 1971. Computer detection
of ventricular ectopic beats. Computers and Biomedical Research 3 (December
1971), 666–674.

[15] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdor�, P. Ch. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. 2003. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a New Research Resource for
Complex Physiologic Signals. Circulation 101 (2003), e215–e220.

[16] Max Gordon and Cranos Williams. 2019. PVC Detection Using a Convolutional
Autoencoder and Random Forest Classi�er. 42–53. DOI:h�p://dx.doi.org/10.1142/
9789813279827 0005

[17] Apple Inc. 2018. Using Apple Watch for Arrhythmia Detection. (2018). h�ps://
www.apple.com/healthcare/site/docs/Apple Watch Arrhythmia Detection.pdf

[18] Apple Inc. 2019. Instructions for Use: ECG App. (2019). h�ps://www.apple.com/
legal/privacy/Instructions-for-Use-ECG-App.pdf

[19] Joan Vila Judith Pea�el-Amparo Galn Elisabet Zamora Agustn Urrutia Antoni
Bayes-Genis Josep Lupn, Marta de Antonio. 2014. Development of a Novel Heart
Failure Risk Tool: �e Barcelona Bio-Heart Failure Risk Calculator (BCN Bio-HF
Calculator). (2014). DOI:h�p://dx.doi.org/10.1371/journal.pone.0085466

[20] Chandrakar Kamath. 2011. ECG beat classi�cation using features extracted from
Teager energy functions in time and frequency domains. Signal Processing, IET 5
(10 2011), 575 – 581. DOI:h�p://dx.doi.org/10.1049/iet-spr.2010.0138

[21] J. L. Kowalak and C. Trukington. 2008. ECG Interpretation. Lippinco� Williams
& Wilkins.

[22] A. Kumar and M. Singh. 2016. Ischemia detection using Isoelectric Energy
Function. Computers in Biology and Medicine 68 (2016), 76–83.

[23] Jianning Li. 2018. Detection of Premature Ventricular Contractions Using Densely
Connected Deep Convolutional Neural Network with Spatial Pyramid Pooling
Layer. (06 2018).

[24] Manuel M. Casas, Roberto L. Avitia, Flix F. Gonzlez-Navarro, Jose Cardenas-Haro,
and Marco A. Reyna. 2018. Bayesian Classi�cation Models for Premature Ven-
tricular Contraction Detection on ECG Traces. Journal of Healthcare Engineering
2018 (05 2018), 1–7. DOI:h�p://dx.doi.org/10.1155/2018/2694768

[25] Yvonne M. Golightly, Kelli D. Allen, Kirsten Ambrose, Jamie L. Stiller, Kelly
R. Evenson, Christiane Voisin, Jennifer Hootman, and Leigh Callahan. 2017.

Physical Activity as a Vital Sign: A Systematic Review. Preventing Chronic
Disease 14 (11 2017). DOI:h�p://dx.doi.org/10.5888/pcd14.170030

[26] M Manikandan, Barathram Ramkumar, Pranav Deshpande, and Tilendra Choud-
hary. 2015. Robust Detection of Premature Ventricular Contractions Using Sparse
Signal Decomposition and Temporal Features. Healthcare Technology Le�ers IET
2 (11 2015). DOI:h�p://dx.doi.org/10.1049/htl.2015.0006
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