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Figure 1. We propose a method for monocular shape completion and a new evaluation dataset. A: The trajectory of the moving camera in
our dataset for non-rigid surface completion; B: Using individual reconstructions for multiple frames and camera poses, our physics-based
approach incrementally completes the global surface. For the observed parts, we use finite element method [34], and for the hidden parts, we
employ Laplacian deformation modelling [28]. C: The complete surface obtained by our algorithm (in red) and the ground truth (in black).

ABSTRACT

We propose a finite element method (FEM) based approach for
surface stitching which can be integrated into existing SLAM and
NRSfM pipelines for AR applications. Given individual reconstruc-
tions and camera poses at different time stamps, our stitching method
incrementally completes the surface with a smooth transition be-
tween the hidden and the observed parts, so that all the observed
parts can be stitched into a single surface. Thanks to the physical
modelling, deformations from the observed parts are propagated
to the hidden parts enabling an overall high-fidelity and realistic
estimate. To keep the computational time in bounds, deformations
near the observed parts are computed with FEM, and the remaining
region is approximated by Laplacian deformation. We assume that
no force is applied to the hidden parts. To evaluate the algorithm,
we generate a synthetic dataset with ground truth. In our dataset,
the camera observes only a part of the target surface in each frame
and moves until the whole target surface is covered. The dataset
which will be made publicly available includes the ground truth cam-
era poses and geometries of the whole surface at each time frame.
An experimental evaluation of the stitching method with accuracy
metrics rounds out the draft.

Index Terms: H.5.1—Information Interfaces and Presentation–
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; I.3.5—Computer Graphics—Computational Geometry
and Object Modeling—Physically-based modeling.

1 INTRODUCTION AND MOTIVATION

Visual simultaneous localisation and mapping (SLAM) techniques
are widely used in augmented reality (AR), medical image analy-
sis and robotic navigation. In the last decade, the methods based
on bundle adjustment [21] and extended Kalman filter [14] have
significantly advanced. Some of them have been extended to pro-
duce per-pixel dense reconstructions for hand-held devices [24] or
even aerial vehicles [32]. These methods require a single monocular
camera and can only handle scenes with rigid objects.

It is challenging to overcome this limitation since the problem of
single-body monocular reconstruction under non-rigid deformations
is ill-posed and underconstrained [33]. Different shapes in 3D can
result in the same observations when projected into 2D. At the same
time, non-rigid structure from motion (NRSfM) remains an active
research field with remarkable results achieved over the last years. In
its core, NRSfM relies on various types of prior knowledge such as
assumptions about deformations and camera motion [9, 31] or low-
rank shape basis [12, 13, 31]. Recently, NRSfM has been extended
to the dense setting [6, 17, 19]. In all of the above methods, the
reconstructed surface must always be entirely observed, including
possible occasional external and self-occlusions. In many real cases,
yet, only parts of the target surface are observed at any given frame.
In endoscopic scenarios (e.g., as can be seen in the liver dataset
from [3]), only a part of the surface is observed in each frame, and
reconstruction of the whole tissue is of high interest for the medical
diagnostics or the AR-assisted surgery. Although the surface is
observed partially, the surface remains connected in most of the
cases (see Fig. 2).

In this work, we take a step towards overcoming the above-
mentioned limitations of SLAM and NRSfM systems, see Fig. 1
for an overview. We use global surface connectivity as prior knowl-
edge and demonstrate a solution to the stitching problem with given
partial reconstructions and camera poses. The reconstruction of the
whole surface does not need to be known in advance. It is worth
noting that we exclusively focus on the stitching problem in this
paper and assume that partial reconstructions and camera poses are
given. In the following, we refer to the observed part as a surface
in the current frame. We refer to the hidden part as a surface which
has been already observed and which is currently out of view. Fur-
thermore, we assume that the hidden part is force-balanced and its
deformation is caused by the deformation of the observed part (imag-
ine a sheet of paper — if one of its corners is displaced, the whole
sheet will be deforming). We model the deformation of the observed
part together with hidden part using linear finite element method
(FEM). Deformations of the observed part are used as constraints
while solving for the deformations of the hidden part.



Figure 2. A, B: Sample frames from the liver dataset [3]. C: The
black-dotted frame is the reconstruction at time t1, the red-dotted
frame is the reconstruction at time t2. The object deforms between
time t1 and t2. D: With given partial reconstructions, stitching is
required to obtain a complete shape. Best viewed in colour.

Since no suitable dataset for evaluating non-rigid shape comple-
tion exists, we create a new comprehensive synthetic dataset with
global ground truth geometry, camera poses and partially observed
geometries generated by physical simulations. Thus, it reflects real-
istic deformations of a thin surface. The new dataset (Sec. 3) and
the proposed shape completion technique (Sec. 4) contribute to the
field with a solution and an evaluation methodology for the scarcely
addressed problem of non-rigid 3D reconstruction and shape com-
pletion from a single moving camera. The main contributions of
this work can be summarised as the follows: We present the first
technique for monocular surface stitching which can be integrated
into SLAM and NRSfM pipelines, in order to make them able to
reconstruct the whole non-rigidly deforming surface and incremen-
tally stitch newly incoming parts to already available reconstruction.
Our algorithm can be used in augmented reality applications for
non-rigid surface recovery, non-rigid SLAM, or predicting the shape
of the non-rigid surface during partial occlusion (Sec. 5).

2 RELATED WORK

Different kinds of SLAM algorithms have been developed in the
last decade. [14] represent the kind of works, which use extended
Kalman filter as the back-end to track the sparse key points. In
contrast to [14], Klein and Murray [21] uses non-linear optimisation.
They extract as much as possible of the information from multiple
keyframes. In contrast to both these methods, Engel et al. [15] min-
imise the photometric disparity error of the pixels in the entire image.
Still, all existing SLAM algorithms can only reconstruct scenes with
rigid objects. Dense NRSfM aims to reconstruct non-rigid sur-
faces [6, 8, 17–19, 25], though, in the existing NRSfM algorithms,
the surface must always be entirely observed and tracked from a
reference frame, including possible external and self-occlusions.

The most closely related methods to our proposed monocular
surface stitching are of the class of NRSfM. Our SLAM component
can be integrated into the final stage of the NRSfM pipeline to
stitch individual non-rigid surfaces under the global connectivity
assumption. Following the work by Bregler et al. [12], most NRSfM
methods represent non-rigid shapes as a linear combination in a
low-rank shape basis. Although this approach can capture global
deformation effectively, it fails to approximate the surface with
multiple stronger local deformations. To solve this problem, the
solution based on piece-wise modelling was proposed [16,26, 30],
i.e., the surface is split into multiple overlapping regions, and each
region is treated as a local model optimised separately. However, the
same point in the overlapping regions can have different positions
due to the independent optimisation. Solely relying on geometric
fitting cost in the overlapping regions might lead to a physically
implausible global reconstruction. As applied to the case of shape
completion, deformations of the hidden parts should also follow the
physical laws. Thus, we propose to model surfaces using a physical
model and estimate deformations of the hidden parts conditioned
upon the observed deformations.

Physics-based models have been used for animation and sim-
ulation purposes in computer graphics [10, 34] and in computer
vision for deformation modelling [20,22]. These approaches capture
small relative deformations well. More accurate simulation can be
achieved by using non-linear FEM for large deformations. Along
with that, the material properties need to be known, which leads to
an additional parameter. Recently, a linear FEM-based approach
has been proposed to recover non-linear deformations [5]. Com-
pared to the non-linear FEM, the linear FEM does not require much
knowledge of the material properties, because most of the material
properties can be factorised out and do not have to be known in
advance [7]. In contrast to [7], we are solving the problem of shape
completion with FEM, while Adugo et al. [7] reconstruct single
objects which are uninterruptedly observed by a camera.

In our method, the computational cost grows with the increasing
area of the hidden surface part. To keep the computational cost
feasible, only deformations of the region that is near to the observed
part are calculated with FEM. The remaining region is approximated
using Laplacian deformation [28], which can deform a part of a
surface without losing the geometric details of the remaining part.

3 DATASET FOR MONOCULAR NON-RIGID SLAM
For the new dataset, we first generate a 75× 75 grid mesh, see
Fig. 3. Then, we apply a particle solver and simulate cloth-like
deformations [23]. The position of each particle (vertices with mass)
is updated after the solver satisfies the equations according to a set of
constraints (e.g., distance, bending and collision). The edges of the
cloth are fixed and serve as boundary conditions in the simulation.

To generate deformation on the surface of the cloth, we use ran-
dom force vectors. The magnitude of the force was tuned such that
it a) does not destroy the mesh topology and b) causes moderate
deformations of the surface. The camera moves along a pre-defined
path and records images of the patches. At each stationary position,
the camera stays for 50 frames, because NRSfM usually requires
accumulated motion and deformation cues of at least 30-50 frames.
For each camera position, we extract the whole mesh, the partial
mesh of every patch (which the camera currently observes) as well
as the patch images. We use Unity [1] for the simulation. All mea-
surements obtained after the simulation comprise the new dataset.

The new dataset suits well for the evaluation of existing and
emerging monocular surface reconstruction methods. It can be used
for evaluation of the shape completion methods (the main scope of
this paper), template-based surface recovery and to train a neural
network for non-rigid reconstruction, in the spirit of the recently
proposed IsMO-GAN [27].

4 OUR SURFACE COMPLETION APPROACH

Our target is to incrementally complete the surface while some re-
gions leave and enter the field of view. We assume that the hidden
(force-balanced) parts are conditioned upon the deformation propa-
gated from the observed regions. Under this assumption, we model
surface deformations with FEM. First, we introduce a deformation
model with continuum mechanics in Sec. 4.1 and then describe our
FEM solution Sec. 4.2. Finally, we present our approach to non-
rigid surface stitching in Sec. 4.3 including details on the handling
of hidden parts with Laplacian deformation modelling in Sec. 4.4.

4.1 Deformation Model with Continuum Mechanics
Similar to [7], we model surface deformations with continuum me-
chanics, i.e., relate the force applied to the surface with the caused
deformations. The FEM model considers the linearly elastic object
in Fig. 4.A referred to a 3D rectangular Cartesian coordinate system
CCC = {x, y, z}. A volumetric force fc acts on the surface, and it gets
internally stressed due to the prescribed loading conditions. The
surface states can be expressed in vector notation in terms of the
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Figure 3. A: Sample images from the dataset. B: Whole groud truth surface. C: Sample groud truth geometries from the dataset (represented
as mesh). D: Third-person views of the simulated surface and camera positions in Unity [1]. E: The global surface is divided into nine patches.
Every patch corresponds to stationary locations of the camera which are substituted one by the other. The red arrows show the camera trajectory
during the image capture.

Figure 4. A: A volumetric force fc acts on the surface Ω , and the Neumann boundary conditions are expressed as ttt and uuu. The problem can be
solved with FEM by dividing the surface into small patches Ω e. B: The 3D wedge elements are used to model the patch Ω e, which has a
visible side and a invisible back side. C: The k triangles to which the node yyyiii belongs. This figure is inspired by [7].

displacement and volumetric force with electrostatic Navier-Cauchy
equations [34] as

E
2(1+ν)(1−2ν)

∇(∇ ·uuu)+ E
2(1+ν)

∇
2 uuu+ fff c = 0 in Ω , (1)

where uuu = [ux,uy,uz]
T is the unknown 3D displacement field. This

expression includes the gradient operator O = [δ /δx, δ /δy, δ /δz]T ,
the divergence operator O · uuu = δux/δx + δuy/δy + δuz/δz, and the
Laplacian operator O2(·) (the divergence of the gradient). Material
properties for the modelled isotropic elastic solid are described using
Young’s modulus E and the Poisson’s ratio ν . A displacement vector
(Dirichlet conditions) uuu = uuu on Γu , or a stress ttt vector (Neumann
conditions) ttt = ttt on Γt expresses the required boundary condition of
this equation. The boundary is defined as Γ = Γu + Γt , with uuu and ttt
being a prescribed displacement and traction field, respectively.

4.2 FEM-Based Solution

While the partial Eq. (1) does not have an analytical solution in
most cases, numerical methods such as FEM can be applied for an
approximate solution. The idea of FEM is to divide a surface Ω

(see Fig. 4) into a finite set of small patches, whose deformations
are easier solvable. The patches are denoted as Ω e and defined by
the nodal points, which has the form of yyyiii = [xi, yi, zi]

T . The nodal
displacement vector and nodal force vector of the iii-th nodal point
can be expressed as aaaiii = [ui, vi, wi]

T and fff iii = [ fxi, fyi, fzi]
T . Based

on the nodal displacements of every nodal point of a patch, the
displacement vector uuu of any point in the patch can be approximated
as a weighted sum of piecewise shape basis functions Ni:

uuu(x,y,z) = ∑
i

Ni aaai. (2)

Eq. (1) can be formulated as a classic linear global FEM system with
the linear FEM approximation:

Kaaa = fff , (3)

where aaa = [aaa000, ... , aaannn]
T and fff = [ fff 000, ... , fff nnn]

T are the 3D global
displacement vector and the force vector of n nodal points. K is
the global stiffness matrix, which can be obtained by assembling
from the associate element stiffness matrix Ke. The element of the
stiffness matrix Ke can be calculated as

Ke =
∫

Ω e
BT DBdΩ

e, (4)

where D(E, ν) is the behaviour matrix for isotropic linear materials
and B is the strain-displacement matrix that depends on the type of
discretisation [10, 34]. Note that the behaviour matrix D is propor-
tional to E, so the element stiffness matrix Ke is also proportional
to E. See App. A for more details. In this paper, the 3D wedge ele-
ments defined using six nodal points are used to model the patches
of non-rigid shape (see Fig. 4). The surface is modelled as a single
layer of these elements. The elements are opaque, which means
the camera cannot see one side of the element. We consider the
3D surface reconstruction in the point cloud representation as the
nodal points in the visible side and generate a triangulated mesh. To
ensure that the equations have a solution, the normals of the triangles
should be oriented consistently, and every single point should be
connected in the mesh. The invisible nodal point yyyhhhiii at the back side
should share the same normal with a correspondent visible nodal yyyvvviii.
The position of an invisible nodal point can be expressed as

yyyhhhiii = hdddiii + yyyvvviii, (5)

where h is a fixed value that corresponds to the surface thickness.
The normal unit vector dddiii of each visible nodal point is weighted



according to the corresponding triangle area computed by a cross
product (see Fig. 4):

dddiii =
∑

k
j=1(mmmiii jjj− yyyiii× (mmmiii jjj+++111− yyyiii)

‖∑
k
j=1(mmmiii jjj− yyyiii× (mmmiii jjj+++111− yyyiii)‖

, (6)

where mmmiii jjj ∈ {mmmiii111 , mmmiii222 , · · · , mmmiiikkk} are the neighbouring nodes
defining k triangles to which the node yyyiii belongs (see Fig. 4).

The nodal point yyyiii in Cartesian coordinates can be expressed in
natural coordinates ξξξ iii = [ηi , ξi , ζi]

T to simplify the integration of
Eq. (4), with ξ , η ∈ [0,1] and ζ ∈ [-1,1]. The Jacobian matrix of the
transformation (see App. A for more details) can be calculated as

J =
∂yyy
∂ξξξ

. (7)

Eq. (4) can be expressed as

Ke =
∫ 1

−1

∫ 1

0

∫ 1−ξ

0
BT DB‖J‖dη dξ dζ , (8)

which can be approximated using integration points [29].
In this paper, we use three-point hammer-integration to ap-
proximate the integral over the triangulation with (ζ ,ξ ) ∈{(1

6
,

2
3

)
,
(2

3
,

1
6

)
,
(1

6
,

1
6

)}
, and three points Gaussian integration

to approximate the integral over the η direction with η ∈ {-0.7746,
0, 0.7746}, which means nine points in total are used to approximate
the integral over 3D wedge elements Ω e.

Next, thanks to the symmetry characteristics of the global stiffness
matrix K, Eq. (1) can be rewritten as[

Kvv Kvh
KT

vh Khh

][
aaavvv

aaahhh

]
=

[
fff vvv

fff hhh

]
. (9)

We assume the force is only applied on the visible side of the sur-
face [7] and Eq. (9) can be simplified with fff hhh = [0, · · · , 0]T as:

Kvaaavvv = fff vvv, (10)

where
Kv =

[
Kvv−Kvh(Khh)

−1(Kvh)
T
]

(11)

is the implicated global matrix.

4.3 Surface Completion using FEM
In our approach, the surface is completed by stitching all 3D recon-
structions F0 · · · Fn, where Fn is the reconstruction at the n-th frame.
Assuming the camera provides sufficient frame rate, there is always
an overlap between two consecutive frames Fi−1 and Fi, with i ∈ [1,
n]. The reconstruction of the complete surface G0 is initialised as
F0. Starting from F1, each frame Fi is stitched into the completed
surface Gi−1, and the state after stitching is saved as Gi.

In our FEM model, the surface is considered to be sufficiently
elastic, which means, the deformation is always proportional to the
applied force. In the real world, objects have an elastic limit (e.g., a
sheet can be torn). Our model does not allow to predict either if the
sheet is torn, or the state of the sheet after tearing. So, we assume
that no force is applied to the hidden part of Gi−1, and displacements
in the hidden part are caused by the displacements in the overlapping
regions. In many practical scenarios, this is a realistic assumption.

To solve Eq. (10), 3D point correspondences in the overlapping
region between every pair of consecutive frames are required. We
obtain the correspondences by projecting geometries into the image
plane and establishing correspondences in the image plane (in the
projection, 2D-3D correspondences are known). In this paper, we

take advantage of known point indexes in the ground truth which
are kept unchanged for the whole surface. This assumption will be
relaxed in future work.

In the following, we explain how Eq. (10) can be solved with
some known displacements and prove that E can be factorised out.
Eq. (10) can be rewritten as

[
KKKvvv

000 · · · KKKvvv
jjj · · · KKKvvv

mmm
]


av
0
...

av
j

...
av

m

=



f v
0
...
f v

j
...

f v
m

 , (12)

where KKKvvv
jjj = [Kv

0 j , · · · , Kv
m j]

T , with j ∈ [0,m]. The dimension
m is equal to three times the number of the nodal points. If the
displacement of a j is known, the j-th row and column of Kv can be
removed without affecting the solution of av

k by rewriting fff vvv as fff vvv -
av

jKKK
vvv
jjj with k ∈ {k = 0, · · · , m; k 6= j}. As the corresponding force

of the unknown displacement was initialized to 0, after removing
rows of all known displacements, the elements in the resultant force
(every row on the right side of the Eq. 12) can be seen as the sum
of a constant times an element of the global Kv matrix. As we
have mentioned before, Ke is proportional to E and, therefore, the
elements of global Kv matrix are proportional to E. Since the
elements on both sides of the remaining equation are proportional to
E, E can be factorised out. In this paper, we set E to 1.

Thus, the deformations of the observed part can be used as con-
straints while solving for the deformations of the hidden part.

4.4 Handling of Hidden Parts
To speed up the computations, only the deformation of the region
that is near to the observed part is calculated with FEM. We use
orthographic projection to define the region in the completed surface
Gi−1 whose deformation should be calculated using FEM. The 3D
reconstruction of frame Fi and completed surface Gi−1 is projected
into the i-th image plane. A polygon referring to a 2D convex hull of
Fi is estimated and extended to ≈1.3 times of its original area. Point
displacements in Gi−1, whose projection fall within this polygon, is
evaluated with FEM.

FEM allows to calculate the deformations according to the laws
of physics but with a high computational cost, and the Laplacian
deformation [28] can calculate the deformation fast and without los-
ing the geometric details of the surface. The principle of Laplacian
deformation is to minimise the energy function expressed as:

E(yyy′′′) = ∑
p
||L (yyyp)−L (yyy′′′p)||2︸ ︷︷ ︸

vertices belong to hidden part

+ ∑
q
||yyy′′′q− (yyyq +aaavvv

q)||2︸ ︷︷ ︸
vertices inside projected polygon

,

(13)
where L denotes Laplacian vertex coordinates of Gi−1, and yyy′′′
denotes the vertex coordinates after Laplacian deformation. We
expect to realistically simulate the observed areas while the shape of
the invisible part is less certain. So, it is a reasonable combination, to
use FEM for the approximation of the deformation near the observed
areas and the Laplacian deformation for the remaining part.

Besides, prior knowledge about the surface could be added to
our stitching algorithm. Since the boundary of our dataset is fixed,
we could set their displacement as 0 both in FEM calculation and
Laplacian deformation. To prove that our algorithm can complete a
surface without any prior, we do not use this prior in this paper.

5 EXPERIMENTAL EVALUATION

We implement FEM with the third-party library eigen [2]. We also
use the third-party library itk [4] for the Laplacian deformation,
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Figure 5. A, B: The completed global surface at frames 350 and
1034. C, top: The completed surface of frame 81 with ν = 0.3 and
h = 0.1; middle: The global surface of frame 81 with ν = 0.2 and h
= 0.1; bottom: The ground truth.

and this operation can be accomplished within 0.5 seconds. In our
experiment, it takes in total ∼40 seconds to stitch a newly incoming
frame to the already available reconstruction with the Intel Core i7
Processor (4x 2.67 GHz). The runtime can be further improved by
using a dedicated FEM library.

We evaluate the proposed algorithm on our new dataset (Sec. 3).
Since we focus only on the stitching problem in this paper, we be-
lieve that a successful experiment with our synthetic dataset with
simulated surface deformations is convincing to prove the effective-
ness of our algorithm. Thus, given individual reconstructions and
camera poses at different moments, a surface is completed frame
by frame. To compare the completed surface reconstructed by our
algorithm against the ground truth, in the first step, we translate
both point clouds so that their centroids coincide with the origin of
the coordinate system. Next, we report the 3D error between the
completed surface and the ground truth, which is defined as

e3D =

∥∥SGT
i−Si

∥∥
F∥∥SGT

i
∥∥

F

, (14)

where SGT
i and Si are the ground truth and the completed surface

of the i-th frame, respectively, and
∥∥·∥∥

F stands for Frobenius norm.
Note that the thickness and ν of the surface are not available as

a prior. We choose h = 0.1 and ν = 0.2 as the default setting. The
bigger the ν , the more incompressible is the material [11]. This
means that the volume of the 3D wedge elements is harder to change
with increasing ν . The boundary of the surface in our dataset is
fixed. Thus, the deformation of the surface causes the change of its
volume. Recall that in our FEM solution, we assume that no external
force is applied to the hidden part. Therefore, its volume is harder
to be changed than the volume of the observed part. We choose a
smaller ν to make it more compressible. The surface with smaller ν

is significantly smoother and fits the ground truth better (see Fig. 5).
The recovered surface can be divided into three types of regions:

1) ground truth reconstruction from the observed part, 2) the nearby
hidden part, which is predicted with FEM, and 3) the remainder of
the hidden part, which is approximated with Laplacian deformation.
According to e3D summarised in Fig. 6, the error in the region which
includes the first and second region types (the grey line), fluctuates
due to the uncertainty in the hidden part. However, it is independent
of the area of the hidden part and is accurate. While the error of the
whole recovered surface (the blue line), which includes all types of
regions, is proportional to the area of the hidden part.

6 CONCLUSION

We introduce a new difficult problem, i.e., monocular non-rigid
surface completion, and propose a first physically-inspired approach
to address it. Experiments show that our method obtains a smooth,
complete, physically plausible and accurate global surface, given
camera poses and locally observed surface parts from our synthetic

Figure 6. e3D as a function of the number of integrated surfaces
corresponding to individual frames. The values at frame 1034 (the
last frame) are the final errors for the entire completed global surface.

non-rigid surface stitching dataset. Even if the forces applied to
the hidden parts are unknown, the parts of the surface calculated
with FEM are accurately stitched, and the observed geometry is
preserved. To keep the runtime in the feasible bounds, we apply
Laplacian deformation modelling for the hidden parts. In future
work, we plan to integrate our algorithm into a framework with
automatic camera pose estimation and monocular surface regression
and test it for real endoscopic data.

Our supplementary material contains a video demonstrating
surface stitching with the proposed algorithm. You can download
the dataset for non-rigid surface completion on our web page.
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A APPENDIX

Here, we provide more details about the functions and matrices used
in FEM. According to the isoparametric concept, any points yyy in a
patch can be mapped from the natural into the Cartesian coordinate
system with

yyy(x,y,z) = ∑
i

Ni(η ,ξ ,ζ )yyyiii(xi,yi,zi) , (15)

where yyyiii is the nodal point of the patch, Ni denotes the shape basis
function and J = ∂yyy/∂ξξξ is the Jacobian matrix of this transforma-
tion. In this paper, we use 3D wedge elements, whose shape basis
function Ni can be expressed in the natural coordinate system as

Nb
1 =

1
2
(1−ξ −η)(1−ζ )

Nb
2 =

1
2

ξ (1−ζ )

Nb
3 =

1
2

η(1−ζ )

Nb
4 =

1
2
(1−ξ −η)(1+ζ )

Nb
5 =

1
2

ξ (1+ζ )

Nb
6 =

1
2

η(1+ζ )

. (16)



Suppose the vector NNNeee is defined as

NNNeee = [Nb
1 ,N

b
2 ,N

b
3 ,N

b
4 ,N

b
5 ,N

b
6 ]

T . (17)

The derivative of Ni can be transformed into the Cartesian coordinate
system by 

NNNT
e,x

NNNT
e,y

NNNT
e,z

= J−1


NNNT

e,ξ

NNNT
e,η

NNNT
e,ζ

 . (18)

The strain-displacement matrix B can be calculated as

B =



NNNT
e,x
⊗

[[[1,0,0]T

NNNT
e,y
⊗

[[[0,1,0]T

NNNT
e,z
⊗

[[[0,0,1]T

NNNT
e,x
⊗

[0,1,0]T +NNNT
e,y
⊗

[[[1,0,0]T

NNNT
e,y
⊗

[0,0,1]T +NNNT
e,z
⊗

[[[0,1,0]T

NNNT
e,x
⊗

[0,0,1]T +NNNT
e,z
⊗

[[[1,0,0]T


. (19)

The behaviour matrix D can be expressed as

D =C



1−ν ν ν 0 0 0

ν 1−ν ν 0 0 0

ν ν 1−ν 0 0 0

0 0 0
1−2ν

2
0 0

0 0 0 0
1−2ν

2
0

0 0 0 0 0
1−2ν

2


, (20)

with the constant C =
E

(1+ν)(1−2ν)
, where E denotes the Young’s

modulus and ν denotes the Poisson’s ratio.
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