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ABSTRACT

In this paper, we analyze the feasability of learning a latent
embedding space from aerial and satellite imagery in order
to capture semantic properties of geographical locations. We
show that deep neural network, trained with a triplet loss func-
tion, can be effectively used to obtain a location-specific em-
bedding. Considering the problem of building footprint seg-
mentation from aerial imagery of varying cities, we leverage
these embeddings together with a clustering for the training
of location-specific segmentation networks and the selection
of the corresponding segmentation network during inference
time. We evaluate our approach on the large-scale Inria Aerial
Image Labeling Dataset which contains aerial images of glob-
ally distributed cities. Our approach achieves an outperfor-
mance against state-of-the-art approaches on the Intersection
over Union metric for the building class over all cities and by
more than 2% for specific cities.

Index Terms— Building Segmentation, Embedding
Learning, Semantic Segmentation, Deep Neural Networks

1. INTRODUCTION

Satellite data and high resolution aerial imagery is becom-
ing more and more accessible in the recent years and chang-
ing the understanding of our planet. One key challenge in
this context is the segmentation of aerial imagery into dif-
ferent land-use and land-cover classes in order to extract a
meaningful information layer from the raw imagery and sup-
port high-level decision making. For example, segmentation
of building footprints and the derived layers such as popu-
lation estimation is an important aspect in urban develop-
ment, disaster management and for governments. In the re-
cent years, several datasets such as the Inria Aerial Image La-
beling Dataset [1], SpaceNet Datasets1 and Kaggle Competi-
tions2 have been released to advance research on this particu-
lar topic. While there have been a lot of advances in building
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Fig. 1. Image patches sampled from different locations of the In-
ria Aerial Image Labeling Dataset [1]. Images convey location-
specific properties such as different rooftop materials, building foot-
print sizes and building densities (urban vs. rural).

footprint segmentation with deep convolutional neural net-
works (CNNs) [2, 3], one challenging problem when applying
these approaches on a global scale, is a large number of varia-
tions in the images that can be observed at different locations
around the globe. Fig. 1 visualizes image patches from ten
different cities. These aerial images show that the underly-
ing distributions of building-densities, -types and -sizes can
be very diverse. In order to cope with these variations in the
images, most state-of-the-art approaches increase the num-
ber of layers in deep convolutional networks to have a higher
capacity for learning these specific properties. While these
approaches are only able to learn the joint distributions over
all locations, it is also slowing down the inference time. Ad-
ditionally, the extension of the network capacity to numerous
different locations is limited in practice due to the high num-
ber of parameters and size of the model.
In this paper, we propose a different approach to address the
problem of building footprint segmentation from images of
very different locations. We rely on deep convolutional neu-
ral networks to learn a location-specific embedding of images.
We study how these image embeddings can be used to train
a set of expert segmentation network. Thereby one particular
network is trained on images that depict similar properties of
other locations. During inference, we leverage the embedding
to select the model that was trained on a most similar data dis-



tribution (e.g. for a new image from the city of New York use
a model that was trained on Washington rather than Tyrol).
The contributions of this work can be summarized as follows:
• To the best of our knowledge, we show for the first time

that aerial images can be embedded into a location-
specific latent space using deep neural networks.

• We present an approach that uses these embeddings to
train and select location-specific expert segmentation
networks in order to cope with high variance in images
from different locations.

• We evaluate our approach on the Inria Aerial Image La-
beling Dataset and obtain better segmentation results
for all cities compared to training with the complete
dataset.

2. APPROACH

In this section, we describe our approach for segmenting
building footprints from aerial images, that have been col-
lected from different locations with varying data distributions.
We first train an embedding network Fe over all images X to
learn an location-specific embedding ei ∈ E for each image
xi ∈ X . The distance of image embeddings belonging to the
same location should be smaller compared to the ones that
belong to images of very different locations. We leverage the
learned embedding space, to perform clustering and identify
the most distinctive locations based on the cluster centroids.
We then train for each cluster c a dedicated expert segmen-
tation network Sc with a set of training images xi and their
ground truth segmentation masks si ∈ S. More formally,
the embedding network Fe learns the mapping from image
to embedding space with Fe : X → E and the segmentation
network is trained to learn the mapping from aerial image
x to the segmentation mask s with Sc : X → S. During
inference, we obtain the embedding from Fe, determine the
nearest cluster c and select the corresponding expert segmen-
tation network Sc. In the following, we describe the details
of the network architectures of Fe and Sc along with the
corresponding loss functions to train these networks.

2.1. Location Embedding Network

The objective of the embedding network Fe is to learn a map-
ping from the input image space to a lower dimensional em-
bedding space. In order to achieve such an image dimen-
sionality reduction, we use an autoencoder network with an
encoder-decoder architecture. Through the bottleneck struc-
ture in the middle of the architecture, the network is forced
to compress the image into a lower dimensional representa-
tion without losing important image features. The autoen-
coder network in this work has a similar architecture than the
segmentation network described in the next section, with the
exception that we use three output layers and that a ResNet34
[4] is used as the convolutional part of the encoder. We opti-

Fig. 2. Visualization of the learned location-specific embedding
space using UMAP [6] and T-SNE [7]. The embeddings are color-
coded for the corresponding locations (Austin (red), Chicago (ma-
genta), Kitsap Co.(blue), Vienna (green), West-Tyrol (yellow)).

Fig. 3. Visualization of the learned embedding space using UMAP
[6] for randomly sampled image patches of different locations.

mize the network with SmoothL1Loss [5] that is less sensitive
to outliers than the often used MSELoss.

Since we are not only interested into finding a low-level
image representation but we also want to learn an embed-
ding in which images of the same location are closer to each
other compared to images from very different locations, we
additionally apply an average pooling layer with a 5x5 ker-
nel on the bottleneck layer of the autoencoder and add to two
fully connected layers. This results in an 2048 dimensional
network output which represents our location-specific image
embedding. We use the triplet-marging loss [8] to measure a
relative similarity between samples. A triplet is composed by
an anchor sample xi, a positive sample xp of the same loca-
tion as xi and a negative sample xn from a differnt location
than xi. The triplet-margin loss is defined as follows:

Ltriplet(X) = max(d(yi, yp)−d(yi, yn)+margin, 0) (1)

where we compute the distance between two embedding vec-
tors with the cosine similarity d(y, yi) = 1 − cosine(y, yi)
The network is trained end-to-end by combining the loss of
the autoencoder and the triplet-marging loss on the second
output of the network.



Table 1. Evaluation results of our approach on the validation
set against two baselines. Please note, that the architecture of the
segmentation network is always the same. Our approach was trained
on three subsets of the dataset, determined using the embedding.

Austin Chicago Kitsap Co. W. Tyrol Vienna Overall
Baseline 1

No embedding
IoU
Acc.

72.59
95.90

66.83
91.61

62.58
99.18

70.21
97.55

76.07
92.86

71.56
95.42

Baseline 2
Rnd. embedding

IoU
Acc.

71.87
95.92

66.74
91.82

62.40
99.19

70.00
97.55

76.38
93.05

71.50
95.51

Our Proposed
Approach

IoU
Acc.

74.11
96.23

66.97
91.92

64.14
99.22

72.25
97.79

76.65
93.24

72.35
95.68

2.2. Semantic Segmentation Network

The segmentation network Sc that we use in this work is based
on the fully convolutional network U-Net [9]. U-Net has an
encoder-decoder architecture which is commonly used in se-
mantic segmentation problems. U-Net uses skip connections
between blocks of the same spatial size in the encoder and
decoder parts to enable a precise localization. Skip connec-
tions allow information to flow directly from the low level
to high-level feature maps without alternations that even fur-
ther improve localization accuracy and speed up convergence
[9]. As an improvement over the originally proposed VGG16
[10] based U-Net architecture, we replace the encoder with a
convolutional part of the Residual network ResNet101[4] that
was pre-trained on ImageNet [11]. In the last network layer,
we use a 1x1 convolution with one output channel and squash
the network output through a Sigmoid activation layer.

3. EXPERIMENTS AND RESULTS

3.1. Aerial Image Dataset and Evaluation Metrics

Our approach is evaluated on the Inria Aerial Image Labeling
Dataset [1]. This dataset is comprised of 360 ortho-rectified
aerial RGB images at 0.3m spatial resolution. The satellite
scenes have tiles of size 5000 x 5000 px, thus covering a sur-
face of 1500 x 1500m per tile. The images comprise ten cities
and an overall area of 810 sq. km. The images convey very
dissimilar urban settlements, ranging from densely populated
areas (e.g., San Francisco’s financial district) to alpine towns
(e.g,. Linz in Austrian Tyrol). Ground-truth data is only pro-
vided for the training set which covers five cities is and the
two semantic classes building and non-building. For compa-
rability, we split the dataset in training and validation set as
described in [1].

We use the following two metrics to evaluate our ap-
proach. The first one is the Intersection over Union (IoU)
for the positive building class. This metric is the number of
pixels labeled as building in the prediction and the ground
truth, divided by the number of pixels labeled as pixel in the
prediction or ground truth. As the second metric, we report
accuracy, the percentage of correctly classified pixels.

Table 2. Evaluation results of our approach on the validation
set against two baselines. Please note, that the architecture of the
segmentation network is always the same. Our approach was trained
on five subsets of the dataset, determined using the embedding.

Austin Chicago Kitsap Co. W. Tyrol Vienna Overall
Baseline 1

No embedding
IoU
Acc.

72.59
95.90

66.83
91.61

62.58
99.18

70.21
97.55

76.07
92.86

71.56
95.42

Baseline 2
Rnd. embedding

IoU
Acc.

68.07
95.31

64.52
91.09

51.38
98.98

62.10
96.95

73.49
92.06

67.95
94.88

Our Proposed
Approach

IoU
Acc.

75.26
96.28

66.95
91.95

63.97
99.21

74.24
97.96

76.72
93.24

72.81
95.73

3.2. Network Training

We initialize the segmentation networks in this paper with a
ResNet101 model pre-trained on ImageNet [11]. All segmen-
tation networks in this paper are trained for 30 epochs with a
batch size of 8. We extract image patches of size 512 x 512
pixels and apply random flipping in horizontal and vertical di-
mension as data augmentation. We use the Adam optimizer
with a learning rate of 0.0001 weight decay of 0.0005 to opti-
mize the network parameters. We optimize the network with
a loss function that combines the binary cross entropy loss
LBCE and the dice loss LDice:

Lcombined = αLBCE − (1− α)LDice (2)

where LDice is a version of the Jaccard Index for non-discrete
objects that is defined as follows [12]:

LDice =
1

n

2∑
c=1

n∑
i=1

(
yi, y

′
i

yi + y′i − yiy′i
) (3)

Inspired by [13], we use the “poly” learning rate policy, in
which the learning rate determined by (1 − iter

max iter )
power.

We set the hyperparameter power to 0.9. The embedding net-
work is trained according to the same procedure except that
ResNet34 pre-trained on ImageNet [11] is used as encoder.

3.3. Experimental Results

3.3.1. Learning and Visualizing Embeddings

In order to evaluate our approach, we train the proposed em-
bedding network Fe over all images in the training set. We
then extract location embeddings of all images in the train-
ing set with Fe, apply k-means clustering with k=3 and k=5.
For each cluster c determine the centroid, construct k train-
ing sets for which we train one dedicated expert segmenta-
tion network Sk. During test time, we also extract the image
embeddings, determine the distance to the nearest cluster cen-
troid and select the corresponding segmentation network from
which we obtain the segmentation mask. Visualizations of the
embeddings in Fig. 2 and Fig. 3 show that image patches
of the same location are closer in the embedding space com-
pared to the ones from different locations. Please note, that



we visualized the embedding space with two different dimen-
sionality reduction techniques (UMAP[6] and T-SNE[7]) and
independently of the technique, we obtain similar results.

3.3.2. Comparison against Baselines

In order to evaluate the effectiveness of our approach, we
compare our method against two baseline approaches:.
• We define the first baseline as segmentation network

that was trained on images over all locations in the
dataset. (no embedding)

• As the second baseline, we randomly select one of the
k=3,5 trained expert segmentation network during test-
time and compute the segmentation mask. If the em-
bedding would not cluster images of the same loca-
tion together and be rather randomly distributed, our
approach would behave similarly to this baseline.

The quantitative results of the three approaches can be seen
in Tab. 1 and Tab. 1. Both tables show that our approach
performs best against both baselines yielding to an improve-
ment of the IoU by more than 2% for specific cities. It can be
also observed that the first baseline performs better than the
second one, which shows the large variety of image features
across locations. When we compare results across both ta-
bles, for a different number of expert segmentation networks,
we can see that the approach with a higher number of expert
segmentation networks performed better. This also indicates
the large variety of images from different locations.

4. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the challenge of learning a location-
specific image embedding for aerial and satellite imagery
using deep neural networks. We focused on semantic seg-
mentation of building footprints from high resolution satellite
imagery and showed how such learned embeddings can be
effectively used to select a model from a set of expert net-
works that is suited best to segment the correspondig image.
On the Inria Aerial Image Labeling Dataset, our approach
outperformed recent methods that were trained on the whole
dataset, by more than 2% for specific cities.

Building upon this work, we plan to extend the learned
embedding space to other location-specific features that can
be derived from the ground truth. It would be for instance pos-
sible to learn an image embedding that takes the density and
size of buildings into account. In this context, we also plan
to make the step from segmenting building footprints from a
set of few and diverse locations to the footprint segmentation
at a global scale using satellite imagery and by relying on a
small set of expert networks only. This would allow mapping
human settlements with publically available satellite imagery,
as introduced by Helber et al. [14] on a global scale with a set
of location-specific segmentation networks.
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