Plan Modification versus Plan Generation:
A Complexity-Theoretic Perspective*

Bernhard Nebel

Jana Koehler

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
e-mail: {nebel|koehler}@dfki.uni-sh.de

Abstract

The ability of a planner to modify a plan is
considered as a valuable tool for improving effi-
ciency of planning by avoiding the repetition of
the same planning effort. From a computation-
al complexity point of view, however, it is by
no means obvious that modifying a plan is com-
putationally as easy as planning from scratch if
the modification has to follow the principle of
“conservatism,” 1.e., to reuse as much of the old
plan as possible. Indeed, considering proposi-
tional STRIPS planning, it turns out that con-
servative plan modification is as hard as plan-
ning and can sometimes be harder than plan
generation. Furthermore, this holds even if we
consider modification problems where the old
and the new goal specification are similar. We
put these results into perspective and discuss
the relationship to existing plan modification
systems.

1 Introduction

Plan generation in complex domains is normally a re-
source and time consuming process. One way to improve
the efficiency of planning systems is to avoid the repeti-
tion of planning effort whenever possible. For instance,
in situations when the goal specification is changed dur-
ing plan execution or when execution time failures hap-
pen, it seems more reasonable to modify the existing plan
than to plan from scratch again. In the extreme, one
might go as far as basing the entire planning process on
plan modification, a method that could be called plan-
ning from second principles.

Instead of generating a plan from scratch, that method
tries to exploit knowledge stored in previously gener-
ated plans. The current problem instance is used to
find a plan in a plan library that—perhaps after some
modifications—can be used to solve the problem instance
at hand. Current approaches try to integrate meth-
ods from analogical or case-based reasoning to achieve

*This paper has been published in the Proceedings of the
13th InIntelligence, pages 1436-1441, Morgan Kaufmann, San
Francisco 1993.

a higher efficiency [Hammond, 1990; Veloso, 1992], inte-
grate domain-dependent heuristics or investigate reuse in
the general context of deductive planning [Koehler, 1992;
Bauer et al., 1993].

Some experiments give evidence that planning based
on second principles might indeed be more efficient than
planning from scratch [Kambhampati and Hendler, 1992;
Veloso, 1992; Hanks and Weld, 1992]. However, it is
by no means clear to what extent these results general-
ize. In fact, it is not obvious that modifying an existing
plan is computationally as easy as generating one from
scratch, in particular, if we adopt the principle of con-
servatism [Kambhampati and Hendler, 1992], that is to
try to recycle “as much of the old solution as possible”
[Veloso, 1992, p. 133] or to “produce a plan ... by mini-
mally modifying [the original plan]” [Kambhampati and
Hendler, 1992, p. 196].

Considering, for instance, the revision of logical the-
ories, most revision schemata turn out to be computa-
tionally harder than deduction [Nebel, 1991; Eiter and
Gottlob, 1992].A similar result holds for abduction [Eiter
and Gottlob, 1993], which may be viewed as “modifying
the assumptions in a proof.” Hence, it seems worthwhile
to have a closer look at the computational nature of the
process of modifying a plan in order to find out why and
under which circumstances plan modification and reuse
promises to be more efficient than planning from scratch.

The computational complexity of different forms of
planning has been recently analyzed by a number of
authors [Chapman, 1987; Bickstrom and Klein, 1991;
Bylander, 1991; Chenoweth, 1991; Gupta and Nau, 1991;
Bylander, 1992; Erol et al., 1992]. However, the compu-
tational complexity of plan modification has not been
investigated yet. We will analyze this problem in the
formal framework of propositional STRIPS planning as
defined by Bylander [1991; 1992]. As Bylander [1991]
notes, this model of planning is “impoverished compared
to working planners” and is only intended to be a “tool
for theoretical analysis.” However, since we are main-
ly interested in comparing plan generation with plan
modification from a complexity-theoretic perspective, this
framework i1s appropriate for our purposes.

As 1t turns out, modifying a plan is not easier than
planning from scratch. On the positive side, we show
that modification does not add any complexity to plan-
ning if we consider the general case. However, there exist

special cases when modifying a plan conservatively, i.e.,
by using as much of the old plan as possible, can be hard-
er than creating one from scratch, as we will show. This
means that plan modification ¢s not uniformly as easy
as plan generation. Further, we show that these results
also hold if we assume that the old and the new planning
situation are similar.

Putting these results into perspective and relating
them to practical approaches reveals that these ap-
proaches do not address the plan modification problem
at all, although some authors claim otherwise.

2 Propositional STRIPS Planning

Like Bylander [1991], we define an instance of proposi-
tional planning as a tuple Il = (P, 0,7, G), where:
e P is a finite set of ground atomic formulae, the con-
ditions,
e (O is a finite set of operators, where each operator
o € O has the form oT,0™ = o4, 0_, where
— oT C P are the positive preconditions,
— 07 C P are the negative preconditions,
— o4 C P are the positive postconditions (add

list), and
— o_ C P are the negative postconditions (delete
list).

e 7 C P 1s the initial state, and

e G = (G4,G_) is the goal specification with Gy C P
the positive goals and G_ C P the negative goals.

P is the set of relevant conditions. A state is a subset
S C P with the intended meaning that p € P 1s true
in state S if p € S, false otherwise. O is the set of
operators that can change states. 7 is the initial state,
and G 1s the goal state specification, with the intended
meaning that all conditions p € G4 must be true and all
conditions p € G_ must be false. A plan A is a finite
sequence (01, ...,0n) of plan steps o; € O. An operator
may occur more than once in a plan. A plan A solves
an instance Il of the planning problem iff the result of
the application of A to 7 leads to a state S that satisfies
the goal specification G, where the result of applying

A ={01,...,05) to a state S is defined by the following
function:
Result(S,{()) = S
(SUog)—o_ if ot CSA
Result(S,{(0)) = oTNS =10
L otherwise

Result(S, {01,02,...,0n))
= Result(Result(S, (01)),{02,...,0n)).

In other words, if the precondition of an operator is sat-
isfied by a state, the positive postconditions are added
and the negative postconditions are deleted. Otherwise,
the state becomes undefined, denoted by L & P.1

!This is a slight deviation from Bylander’s [1991] defini-
tion that does not affect the complexity of planning. This
deviation is necessary, however, to allow for a meaningful
definition of the plan modification problem.

As usual, we consider decision problems in order
to analyze the computational complexity of planning.?
PLANSAT is defined to be the decision problem of deter-
mining whether an instance I = (P, 0,Z,G) of propo-
sitional STRIPS planning has a solution, i.e., whether
there exists a plan A such that Result(Z, A) satisfies the
goal specification. PLANMIN [Bylander, 1993] is defined
to be the problem of determining whether there exists a
solution of length n or less, i.e., 1t is the decision problem
corresponding to the search problem of generating plans
with minimal length.

Based on this framework, Bylander [1991; 1992; 1993]
analyzed the computational complexity of the general
propositional planning problem and a number of gener-
alizations and restricted problems. In i1ts most gener-
al form, both PLANSAT and PLANMIN are PSPACE-
complete. Severe restrictions on the form of the opera-
tors are necessary to guarantee polynomial time or even
NP-completeness.

3 Plan Modification in a Propositional
Framework

Kambhampati and Hendler [1992] define the plan modi-
fication problem as follows (adapted to our framework of
propositional STRIPS planning):

Given an instance of the planning problem
I = (P,0,7',G') and a plan A that solves
the instance IT = (P, O,Z,G), produce a plan
A’ that solves II' by minimally modifying A.

We will call this problem MODGEN.

By “minimal modification of a plan” Kambhampati
and Hendler [1992] mean to “salvage as much of the old
plan as possible.” Of course, the part of the old plan
that has been salvaged should be ezecutable, i.e.; the
preconditions of all operators should be satisfied. In or-
der to guarantee this, we require that all operators are
executable (see the definition of the function Result).

Turning the above specified search problem into a de-
cision problem leads to what we will call the MODSAT
problem:

An instance of the MODSAT problem is given
by T = (P,0,7',G"), a plan A that solves
IT={(P,0,Z,G), and an integer k < |A|. The
question is whether there exists a plan A’ that

solves I1’ and contains a subplan of A of at least
length k7

In order to fully specify MODSAT, we have to define
the meaning of the phrase “A’ contains a subplan of A
of length £.” For this purpose, we define the notion of a
plan skeleton, a sequence of operators and “wildcards,”
denoted by “x.” The length of a plan skeleton is the num-
ber of operators, i.e., we ignore the wildcards. A plan
skeleton can be derived from a plan according to a mod-
fication strategy M by deleting and rearranging plan
steps and adding wildcards. A plan skeleton can be ez-
tended to a plan by replacing each wildcard by a possibly

We assume that the reader is familiar with the basic
notions of complexity theory as presented, for instance, in
[Garey and Johnson, 1979].

empty sequence of operators. Now we say that plan A’
contains a subplan of A of length k according to a mod-
fication strategy M iff a skeleton T' of length &k can be
derived from A according to M and I' can be extended
to A’. In general, we will consider only polynomial-time
modification strategies, i.e., strategies such that verify-
ing that the skeleton I' can be derived from the plan A
is a polynomial-time problem. In the following, we will
consider two different plan modification strategies that
satisfy this constraint.

The first alternative we consider is to allow for dele-
tions in the original plan and additions before and after
the original plan. Supposing the plan

A= (or,.. s on),

the following plan skeleton could be derived from A, for
instance:

-3 04,041, -+ -, 051,04, -

I'=(x01,.. ey O,),

where ' has length ¢ + n — j + 1. The corresponding
modification problem will be called MODDEL.

Another alternative is to allow for deletion of plan
steps in the old plan and additions before, after, and in
the middle of the old plan. Assuming the same plan A as
above, the following skeleton plan of length ¢ +n—j+ 1
could be derived:

I'=(x01,.. oy Oy %),

The corresponding modification problem 1s called MOD-
DELINS.

Finally, it should be noted that although the frame-
work we have defined above deals only with linear plans,
it can be easily modified to apply to nonlinear planning,
as well. In particular, all hardness results will apply di-
rectly to nonlinear planning since linear plans are simply
a special case of nonlinear ones.

<304, 04, .

<y 00, %, 04,

4 The Complexity of Plan Modification

One almost immediate consequence of the definitions
above 1s that plan modification cannot be easier than
plan generation. This even holds for all restrictions of
the PLANSAT problem. If PLANSAT, is a restricted
planning problem, then MODSAT, shall denote the cor-
responding modification problem with the same restric-
tions.

Proposition 1 PLANSAT, transforms polynomially to
MODSAT, for all restrictions p.?

However, plan modification i1s also not harder than
plan generation in the general case.

Proposition 2 MODSAT is PSPACE-complete.

This proposition could be taken as evidence that plan
modification i1s not harder than plan generation. Howev-
er, it should be noted that the proposition is only about
the general problem. So, it may be the case that there
exist special cases such that plan modification i1s harder
than generation. Such a case will not be found among
the PSPACE- and NP-complete planning problems, how-
ever.

SFull proofs of propositions and theorems can be found in
the full paper [Nebel and Koehler, 1992].

Theorem 3 If PLANSAT, is a restricted planning
problem that 1s PSPACE-complete or NP-complete, then
MODSAT, s PSPACE-complete or NP-complete prob-

lem, respectively.

Proof. PSPACE-hardness and NP-hardness, respective-
ly, are obvious because of Proposition 1. Membership fol-
lows in case of PSPACE by Proposition 2. In case of NP,
we initially guess (1) n (0 < n < |A|+2) possibly empty
plans A; such that |A;] < |A|, (2) 2n states Sy, ..., Son,
and (3) n polynomially bounded proofs that there exists
plans from each state Sy; to state Sa;49 for 1 <7 <n—1.
Since PLANSAT, is in NP, such proofs exist (in most
cases, these proofs will be plans). Then we verify in
polynomial time (1) that S; = Z and Ss, satisfies the
goal specification G, (2) that Result(Sa;—1, A;) = Sa, (3)
that the plan existence proofs are correct, and (4) that
(Aq,w, Aoy, o Ay g, %, Ay) s a skeleton of length &
that can be derived from A. This is obviously a nonde-
terministic algorithm that runs in polynomial time. ®

The converse of the above theorem does not hold,
however. There exist cases when plan generation is a
polynomial time problem while plan modification is NP-
complete.

Theorem 4 There exists a polynomial-time PLANSAT,
problem such that the corresponding MODDEL, and
MODDELINS,, problems are NP-complete.

Proof. The planning problem PLANSAT{ defined by
restricting operators to have only positive preconditions
and only one postcondition can be solved in polynomial

time [Bylander, 1991, Theorem 7). Let PLANSATf’pOSt
be the planning problem defined by restricting oper-
ators to have (1) only one postcondition p, (2) the
negated condition p as a precondition, and (3) any
number of additional positive preconditions. From the
specification of the algorithm Bylander [1991] gives for

PLANSATT, it is evident that PLANSATf’pOSt can also
be solved in polynomial time. We will show that the cor-
Lil—,post

responding modification problems MODDE and

MODDELINSf’pOSt are NP-complete.

For the hardness part we use a reduction from SAT,
the problem of satisfying a boolean formula in conjunc-
tive normal form. Let V = {v1,..., vy} be the set of
boolean variables and let C' = {¢1,...,¢,} be the set of

clauses. Now we construct a MODDELf’pOSt problem
that can be satisfied iff there exists a satisfying truth
assignment for the SAT problem.

The set of conditions P contains the following ground
atoms:

T;, 1<i<m, w; =true has been selected

F;, 1<i<m, wv;="false has been selected

Si, 1 <i<m, the truth value for v; has been selected
E;, 0<i:<m, enableevaluation

C;, 1<n<n, c;evaluates to true.

Further, we assume the following set of operators O:

+ -

or, o = O4, o_
i; = {TZ},) = 0, {Tz}
fi = {FZ}, 0 = 0, {Fz}
st; = {EaEOa"'aEm}’ {SZ} = {Sl}a @
Sfi = {FiaEOa"'aEm}’ {SZ} = {Sl}a @
€; = , {El} = {El}, 0
pOsiyj = {EaEOa"'aEm}a {C]} = {C]}’ 0
if v; € Cj
neg; ; = I, Fo,...,En}, {Cj} = {C;}, 0
ifU_Z'ECj.
Assume the following initial and goal state:
7 = {Tla"'aTmaFla"'aFm}
g+ = {EQ,...,Em}
g— = {Tla"'aTmaFla"'aFm}'

The instance I = (P, 0,7, G) is, for example, solved by
the following plan A:

A=, . tmy f1y o fms €0y ooy €m)e
Now consider the instance II' = (P, O, 7', G') such that
' = 7
G = {Bo ... Em. S S, Cryen o)
gL = 0

It is obvious that the SAT formula is satisfiable if, and
only if, the plan A can be modified by deleting at most
m operators and adding some operators before and after
the original plan A in order to achieve a new plan A’
that solves II'. L

Membership in NP follows since PLANSATf’pOSt
is in NP. Using the same algorithm as described in
the proof of Theorem 3 leads to a nondeterminis-

tic polynomial-time algorithm for MODDELT’W and
MODDELINS} 7%, u

5 Modifying Plans When the Situations
are Similar

The results above could be considered as being not rel-
evant for plan modification in real applications because
we made no assumption about the similarity between old
and new planning situation. The efficiency gains expect-
ed from plan reuse, on the other hand, are based on the
assumption that the new situation i1s sufficiently close to
the old one—which supposedly permits an easy adapta-
tion of the old plan to the new situation. Besides the
fact that this looks like a good heuristic guidance, there
is the question whether small differences between the old
and the new situation lead to a provable efficiency gain
in terms of computational complexity. So it might be
perhaps the case that modification 1s easier than plan-
ning if the goal specifications differ only on a constant
or logarithmic number of atoms. Although this seems to
be possible, there is the conflicting intuition that small
changes in the planning situations could lead to drastic
(and hard to compute) changes in the plans.

As it turns out, restricting the number of differing
atoms does not lead to a different picture than the one
presented in the previous section. First of all, Theo-
rem 4 still holds for the restricted versions of the mod-
ification problems MODDEL and MODDELINS, where
we require the old and new initial states to be identical
and the old and new goal specification to differ only on
one atom. We call these restricted versions of the mod-
ification problems MODDEL1G and MODDELINS1G,

respectively.

Theorem 5 There exists a polynomial-time PLANSAT,
problem such that the corresponding MODDEL1G, and
MODDELINS1G, problems are NP-complete.

Proof. The transformation used in the proof of Theo-
rem 4 is modified as follows. A new atom B is added,
which is assumed to be false in the initial state Z and
not mentioned in the old goal specification G. The new
goal specification G’ is:

Gy = GU{B}

G. = G_.
Finally, the following operator is added:
{Eo,...,Em,Sl,...,Sm,Cl,...,Cn},{B}:>®,{B} L]

Although this theorem confirms the intuition that
small changes in the goal specification can lead to drastic
changes in the plan, it does not rule out the possibility
that there are some hard planning problems such that
the corresponding modification problems are easy if the
goal specification is only changed marginally. In order to
rule out this possibility, we would need something similar
to Proposition 1. Since there appears to be no general
way to reduce PLANSAT, problems to MODSATI1G,
problems, we will settle for something slightly less gen-
eral. We will show that generating a plan by modifying
a plan for a similar goal specification is at least as hard
as the corresponding PLANSAT problem. Hence, in-
stead of the decision problem MODSATI1G, we consider
the search problem MODGENI1G. Further, in order to
allow for a “fair” comparison between PLANSAT and
MODGENI1G, we measure the resource restrictions of
MODGENI1G in terms of the size of the planning prob-
lem instance—and ignore the size of the old problem.*
Under these assumptions, it is possible to specify a Tur-

ing reduction from PLANSAT, to MODGENI1G,.

Theorem 6 If PLANSAT, is a restricted planning
problem that is PSPACE-hard or NP-hard, then the cor-
responding MODGEN1G, problem is PSPACE-hard or
NP-hard, respectively.

Proof. Using an algorithm for MODGENI1G,, we can
generate a plan by modifying it iteratively, starting with
the empty plan and empty goal specification and contin-
uing by adding step by step one goal atom. Since the size
of the goal specification is linearly bounded by the prob-
lem instance, we would need only linearly many calls.
Supposing that the theorem does not hold would imply

*This is necessary to rule out such pathological situations
as the one where modifying an ezponentially long plan ap-
pears to be polynomial while generating it is exponential.

that generating a plan under restrictions p is easier than
PLANSAT,, which is impossible by definition. u

It should be noted that we did not rely on any particu-
lar property of the MODGENI1G,, algorithm. In particu-
lar, we did not make the assumption that the algorithm
has to recycle a maximal reusable plan skeleton. Fur-
thermore, the above theorems apply, of course, also to
the modification problems that are restricted to have an
one-atom-difference between the initial states.

6 Discussion

Of course, there arises the question of how the above
results relate to practical plan modification systems.
Kambhampati and Hendler [1992] investigate plan reuse
and modification in the framework of the hierarchical
planner and modification system PRIAR, which 1s based
on NONLIN [Tate, 1977]. They use a large number of
blocks-world examples in order to evaluate the relative
efficiency gains provided by plan modification compared
with planning from scratch. The average savings of run-
time when plans were reused is given by the authors as
79%.

Hanks and Weld [1992] performed experiments on
reusing blocks world plans with their system spa. This
plan generation and modification system is based on a
lifted version of McAllester’s and Rosenblitt’s [1991] sys-
tematic nonlinear planning algorithm. In case of the spa
system, the savings turned out to be less drastic than
in the PRIAR system. In fact, in the sPA system plan
modification can be more expensive than plan genera-
tion in terms of runtime if the reuse candidate is not
close enough [Hanks and Weld, 1992, p. 103], a situa-
tion that did not happen with similar input data in the
PRIAR system.

While the relative savings appear to be different for
the two approaches, in both cases there is a positive ef-
fect which increases when the difference between the new
and the old situations decreases. Although this seems
to run counter to our complexity results (in particular
Theorem 6), these empirical findings do not contradict
our results because the experiments were clearly not de-
signed to explore worst-case situations, which complex-
ity analysis 1s about. An interesting avenue of research
would be to characterize the form of planning problems
that can exploit plan-reuse techniques to improve the
efficiency of the planning process.

What seems to be less easily explainable is, however,
the discrepancy between the hope that reusing maximal
subplans increases the efficiency of plan reuse and our
findings. Our results imply that conservative plan mod-
ification introduces some combinatorics into the plan-
ning and reuse process. In particular, as a Corollary of
Proposition 2 it follows that is not possible to determine
efficiently (i.e., in polynomial time) a maximal reusable
plan skeleton before plan generation starts to extend the
skeleton.

Corollary 7 It is PSPACE-hard to compute a mazximal
plan skeleton for MODSAT instances.

In other words, plan generation and plan modification
cannot be separated. For this reason, the planning pro-
cess becomes actually more involved when recycling as
much of the old plan as possible. Instead of searching
for an arbitrary solution, a plan that contains a maximal
subplan of the old plan has to be sought.

Kambhampati and Hendler [1992] mention conser-
vatism, 1.e., to “salvage as much of the old plan as pos-
sible,” as an “important desideratum” for a plan mod-
ification capability, in order to “ensure efficiency.” At
a first glance, this seems to be indeed reasonable since
it promises to minimize the additional planning effort.
As we have seen, however, finding the maximal reusable
plan skeleton is already as difficult as planning and is
sometimes even more difficult than the corresponding
planning problem (Theorem 4). Hence, “conservatism”
seems to run counter to increasing planning efficiency.

Having a closer look at the PRIAR framework re-
veals that plan skeletons are derived in polynomial time
[Kambhampati and Hendler, 1992, p. 197] by a process
called “annotation verification.” Hence, by Corollary 7,
this process cannot by any means derive maximal appli-
cable plan skeletons. Further; the authors do not give
any arguments that they approximate such skeletons. In
fact, the skeletons derived by PRIAR are not even guar-
anteed to be applicable. So, PRIAR does not seem to ad-
dress the problem of “minimally modifying plans,” con-
trary to what the authors claim.

In fact, maxrimal reuse of an old plan only seems to
make sense in a replanning context if costs are charged
for not executing already planned steps. So, it seems to be
the case that the two motivations for plan modification,
namely, replanning and reuse may not be as similar as
one might think. While in plan reuse the efficiency of
the planning process is the most important factor, in
replanning the minimal disturbance of the old plan may
be more important, leading to a more involved planning
process.?

Plan modification in the PRIAR framework—and in
other plan-reuse systems—seems not to be a computa-
tional problem that has to be addressed, but rather a
solution, a heuristic technique. The “plan skeleton” that
is reused 1is not the maximal applicable one, but the one
that the particular planning algorithm perhaps can ex-
ploit in generating a solution. In other words, the old
plan is used as an “entry point” into the search space
([)f po]ssible plans, as made explicit by Hanks and Weld

1992].

7 Conclusion

Improving the efficiency of planning systems by adding
capabilities to modify existing plans has received some
research interest recently. In analyzing the computa-
tional complexity of this problem, we showed that it 1s

SKambhampati makes the same distinction in a later pa-
per [Kambhampati, 1992]. Based on arguments concerning
the search process of a planner, he also argues that guaran-
teeing that every step that could be reused is reused could be
computationally expensive—a conjecture confirmed by The-
orem 4.

as hard as planning and sometimes modification is even
harder than planning from scratch. We showed also that
these results hold under the restriction that the mod-
ification process has to account for only one changed
atom in the goal specification. In particular, we showed
that deriving the maximal reusable subplan is not easier
than planning. Hence, we cannot hope for minimizing
planning effort by first identifying the maximal applica-
ble subplan which is then (minimally) extended by plan
generation.

Relating these results to existing plan reuse and mod-
ification systems, it turns out that these do not address
the modification problem at all, although some authors
claim otherwise. In fact, in plan-reuse systems, plan
modification is not attacked as a problem but consid-
ered as a heuristic technique. This means that instead
of “using as much of the old plan as possible” these sys-
tems recycle “as much of the old plan as the particular
planning algorithm will perhaps be able to use in solving
the new problem instance.” In fact, adopting the prin-
ciple of conservatism in plan modification only seems to
make sense in a replanning context where one wants to
minimize the perturbation of the original plan.

Acknowledgements

We would like to thank Christer Backstrom, Tom Bylan-
der, Subbarao Kambhampati, and the anonymous refer-
ees, who provided helpful comments on an earlier ver-
sion of this paper. In particular, Tom’s remarks and
questions heavily influenced the paper.

References

[Backstrom and Klein, 1991] C. Béackstrom and I. Klein.
Parallel non-binary planning in polynomial time. In
Proc. 12th Int’l Joint Conf. on Artif. Intell., pages
268-273, 1991.

[Bauer et al., 1993] M. Bauer, S. Biundo, D. Dengler,
J. Koehler, and G. Paul. Phi—a logic-based tool for
intelligent help systems. 1993. These proceedings.

[Bylander, 1991] T. Bylander. Complexity results for
planning. In Proc. 12th Int’l Joint Conf. on Artif.
Intell., pages 274-279, 1991.

[Bylander, 1992] T. Bylander. Complexity results for
extended planning. In Proc. of the 1st Int’l Conf. on
Artsf. Intell. Plan. Sys., 1992.

[Bylander, 1993] T. Bylander. The computational com-
plexity of propositional STRIPS planning. Artif. In-
tell., 1993. To appear.

[Chapman, 1987] D. Chapman. Planning for conjunc-
tive goals. Artif. Intell., 32(3):333-377, 1987.

[Chenoweth, 1991] S. V. Chenoweth. On the NP-
hardness of blocks world. In Proc. of the 9th Nat’l
Conf. on Artif. Intell., pages 623-628, 1991.

[Eiter and Gottlob, 1992] T. Eiter and G. Gottlob. On
the complexity of propositional knowledge base re-
vision, updates, and counterfactuals. Artif. Intell.,

57:227-270, 1992.

[Eiter and Gottlob, 1993] T. Eiter and G. Gottlob. The
complexity of logic-based abduction. In Proc. 10th
Symp. on Theo. Asp. of Comp. Sci., 1993. To appear.

[Erol et al., 1992] K. Erol, D. S. Nau, and V. S. Subrah-
manian. On the complexity of domain-independent
planning. In Proc. 10th Nat’l Conf. on Artif. Intell.,
pages 381-386, 1992.

[Garey and Johnson, 1979] M. R. Garey and D. S. John-
son. Computers and Intractability—A Guide to the
Theory of NP-Completeness. Freeman, San Francis-

co, CA, 1979.

[Gupta and Nau, 1991] N. Gupta and D. S. Nau. Com-
plexity results for blocks-world planning. In Proc. of
the 9th Nat’l Conf. on Artif. Intell., pages 629-633,
1991.

[Hammond, 1990] K. J. Hammond. Explaining and re-
pairing plans that fail. Artif. Intell.; 45:173-228, 1990.

[Hanks and Weld, 1992] S. Hanks and D. S. Weld. Sys-
tematic adaptation for case-based planning. In Proc.
1st Int’l Conf. on Artif. Intell. Plan. Sys., pages 96—
105, 1992.

[Kambhampati and Hendler, 1992] S. Kambham-
pati and J. A. Hendler. A validation-structure-based
theory of plan modification and reuse. Artif. Intell.,
55:193-258, 1992.

[Kambhampati, 1992] S. Kambhampati. Utility trade-
offs in incremental plan modification and reuse. In
AAAI Spring Symp. on Comp. Consid. in Supporting
Incr. Mod. and Reuse, pages 36-41, 1992.

[Koehler, 1992] J. Koehler. Towards a logical treatment
of plan reuse. In Proc. of the 1st Int’l Conf. on Artif.
Intell. Plan. Sys., pages 285-286, 1992.

[McAllester and Rosenblitt, 1991] D. McAllester and
D. Rosenblitt. Systematic nonlinear planning. In Proc.

9th Nat’l Conf. on Artif. Intell., pages 634-639, 1991.
[Nebel and Koehler, 1992] B. Nebel and J. Koehler.

Plan modification versus plan generation: A
complexity-theoretic perspective. Research Report
RR-92-48, German Research Center for Artificial In-
telligence (DFKI), Saarbriicken, Germany, 1992.

[Nebel, 1991] B. Nebel. Belief revision and default rea-
soning: Syntax-based approaches. In J. A. Allen,
R. Fikes, and E. Sandewall, editors, Principles of
Knowledge Representation and Reasoning: Proc. 2nd

Int’l Conf., pages 417-428, 1991.

[Tate, 1977] A. Tate. Generating project networks. In
Proc. of the 5th Int’l Joint Conf. on Artif. Intell.,
pages 888-893, 1977.

[Veloso, 1992] M. M. Veloso. Automatic storage, re-
trieval, and replay of multiple cases using derivational
analogy in PRODIGY. In AAAI Spring Symp. on
Comp. Consid. in Supporting Incr. Mod. and Reuse,
Working Notes, pages 131-136, 1992.

