
Plan Modi�cation versus Plan Generation:A Complexity-Theoretic Perspective�Bernhard Nebel Jana KoehlerGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germanye-mail: fnebeljkoehlerg@dfki.uni-sb.deAbstractThe ability of a planner to modify a plan isconsidered as a valuable tool for improving e�-ciency of planning by avoiding the repetition ofthe same planning e�ort. From a computation-al complexity point of view, however, it is byno means obvious that modifying a plan is com-putationally as easy as planning from scratch ifthe modi�cation has to follow the principle of\conservatism," i.e., to reuse as much of the oldplan as possible. Indeed, considering proposi-tional STRIPS planning, it turns out that con-servative plan modi�cation is as hard as plan-ning and can sometimes be harder than plangeneration. Furthermore, this holds even if weconsider modi�cation problems where the oldand the new goal speci�cation are similar. Weput these results into perspective and discussthe relationship to existing plan modi�cationsystems.1 IntroductionPlan generation in complex domains is normally a re-source and time consuming process. One way to improvethe e�ciency of planning systems is to avoid the repeti-tion of planning e�ort whenever possible. For instance,in situations when the goal speci�cation is changed dur-ing plan execution or when execution time failures hap-pen, it seems more reasonable tomodify the existing planthan to plan from scratch again. In the extreme, onemight go as far as basing the entire planning process onplan modi�cation, a method that could be called plan-ning from second principles.Instead of generating a plan from scratch, that methodtries to exploit knowledge stored in previously gener-ated plans. The current problem instance is used to�nd a plan in a plan library that|perhaps after somemodi�cations|can be used to solve the problem instanceat hand. Current approaches try to integrate meth-ods from analogical or case-based reasoning to achieve�This paper has been published in the Proceedings of the13th InIntelligence, pages 1436-1441, Morgan Kaufmann, SanFrancisco 1993.

a higher e�ciency [Hammond, 1990; Veloso, 1992], inte-grate domain-dependent heuristics or investigate reuse inthe general context of deductive planning [Koehler, 1992;Bauer et al., 1993].Some experiments give evidence that planning basedon second principles might indeed be more e�cient thanplanning from scratch [Kambhampati and Hendler, 1992;Veloso, 1992; Hanks and Weld, 1992]. However, it isby no means clear to what extent these results general-ize. In fact, it is not obvious that modifying an existingplan is computationally as easy as generating one fromscratch, in particular, if we adopt the principle of con-servatism [Kambhampati and Hendler, 1992], that is totry to recycle \as much of the old solution as possible"[Veloso, 1992, p. 133] or to \produce a plan : : : by mini-mally modifying [the original plan]" [Kambhampati andHendler, 1992, p. 196].Considering, for instance, the revision of logical the-ories, most revision schemata turn out to be computa-tionally harder than deduction [Nebel, 1991; Eiter andGottlob, 1992].A similar result holds for abduction [Eiterand Gottlob, 1993], which may be viewed as \modifyingthe assumptions in a proof." Hence, it seems worthwhileto have a closer look at the computational nature of theprocess of modifying a plan in order to �nd out why andunder which circumstances plan modi�cation and reusepromises to be more e�cient than planning from scratch.The computational complexity of di�erent forms ofplanning has been recently analyzed by a number ofauthors [Chapman, 1987; B�ackstr�om and Klein, 1991;Bylander, 1991; Chenoweth, 1991; Gupta and Nau, 1991;Bylander, 1992; Erol et al., 1992]. However, the compu-tational complexity of plan modi�cation has not beeninvestigated yet. We will analyze this problem in theformal framework of propositional STRIPS planning asde�ned by Bylander [1991; 1992]. As Bylander [1991]notes, this model of planning is \impoverished comparedto working planners" and is only intended to be a \toolfor theoretical analysis." However, since we are main-ly interested in comparing plan generation with planmodi�cation from a complexity-theoretic perspective, thisframework is appropriate for our purposes.As it turns out, modifying a plan is not easier thanplanning from scratch. On the positive side, we showthat modi�cation does not add any complexity to plan-ning if we consider the general case. However, there exist1



special cases when modifying a plan conservatively, i.e.,by using as much of the old plan as possible, can be hard-er than creating one from scratch, as we will show. Thismeans that plan modi�cation is not uniformly as easyas plan generation. Further, we show that these resultsalso hold if we assume that the old and the new planningsituation are similar.Putting these results into perspective and relatingthem to practical approaches reveals that these ap-proaches do not address the plan modi�cation problemat all, although some authors claim otherwise.2 Propositional STRIPS PlanningLike Bylander [1991], we de�ne an instance of proposi-tional planning as a tuple � = hP;O; I;Gi, where:� P is a �nite set of ground atomic formulae, the con-ditions,� O is a �nite set of operators, where each operatoro 2 O has the form o+; o� ) o+; o�, where{ o+ � P are the positive preconditions,{ o� � P are the negative preconditions,{ o+ � P are the positive postconditions (addlist), and{ o� � P are the negative postconditions (deletelist).� I � P is the initial state, and� G = hG+;G�i is the goal speci�cation with G+ � Pthe positive goals and G� � P the negative goals.P is the set of relevant conditions. A state is a subsetS � P with the intended meaning that p 2 P is truein state S if p 2 S, false otherwise. O is the set ofoperators that can change states. I is the initial state,and G is the goal state speci�cation, with the intendedmeaning that all conditions p 2 G+ must be true and allconditions p 2 G� must be false. A plan � is a �nitesequence ho1; : : : ; oni of plan steps oi 2 O. An operatormay occur more than once in a plan. A plan � solvesan instance � of the planning problem i� the result ofthe application of � to I leads to a state S that satis�esthe goal speci�cation G, where the result of applying� = ho1; : : : ; oni to a state S is de�ned by the followingfunction:Result(S; hi) = SResult(S; hoi) = 8<: (S [ o+) � o� if o+ � S^o� \ S = ;? otherwiseResult(S; ho1; o2; : : : ; oni)= Result(Result(S; ho1i); ho2; : : : ; oni):In other words, if the precondition of an operator is sat-is�ed by a state, the positive postconditions are addedand the negative postconditions are deleted. Otherwise,the state becomes unde�ned, denoted by ? 62 P.11This is a slight deviation from Bylander's [1991] de�ni-tion that does not a�ect the complexity of planning. Thisdeviation is necessary, however, to allow for a meaningfulde�nition of the plan modi�cation problem.

As usual, we consider decision problems in orderto analyze the computational complexity of planning.2PLANSAT is de�ned to be the decision problem of deter-mining whether an instance � = hP;O; I;Gi of propo-sitional STRIPS planning has a solution, i.e., whetherthere exists a plan � such that Result(I;�) satis�es thegoal speci�cation. PLANMIN [Bylander, 1993] is de�nedto be the problem of determining whether there exists asolution of length n or less, i.e., it is the decision problemcorresponding to the search problem of generating planswith minimal length.Based on this framework, Bylander [1991; 1992; 1993]analyzed the computational complexity of the generalpropositional planning problem and a number of gener-alizations and restricted problems. In its most gener-al form, both PLANSAT and PLANMIN are PSPACE-complete. Severe restrictions on the form of the opera-tors are necessary to guarantee polynomial time or evenNP-completeness.3 Plan Modi�cation in a PropositionalFrameworkKambhampati and Hendler [1992] de�ne the plan modi-�cation problem as follows (adapted to our framework ofpropositional STRIPS planning):Given an instance of the planning problem�0 = hP;O; I0;G0i and a plan � that solvesthe instance � = hP;O; I;Gi, produce a plan�0 that solves �0 by minimally modifying �.We will call this problem MODGEN.By \minimal modi�cation of a plan" Kambhampatiand Hendler [1992] mean to \salvage as much of the oldplan as possible." Of course, the part of the old planthat has been salvaged should be executable, i.e., thepreconditions of all operators should be satis�ed. In or-der to guarantee this, we require that all operators areexecutable (see the de�nition of the function Result).Turning the above speci�ed search problem into a de-cision problem leads to what we will call the MODSATproblem:An instance of the MODSAT problem is givenby �0 = hP;O; I0;G0i, a plan � that solves� = hP;O; I;Gi, and an integer k � j�j. Thequestion is whether there exists a plan �0 thatsolves �0 and contains a subplan of � of at leastlength k?In order to fully specify MODSAT, we have to de�nethe meaning of the phrase \�0 contains a subplan of �of length k." For this purpose, we de�ne the notion of aplan skeleton, a sequence of operators and \wildcards,"denoted by \�." The length of a plan skeleton is the num-ber of operators, i.e., we ignore the wildcards. A planskeleton can be derived from a plan according to a mod-i�cation strategy M by deleting and rearranging plansteps and adding wildcards. A plan skeleton can be ex-tended to a plan by replacing each wildcard by a possibly2We assume that the reader is familiar with the basicnotions of complexity theory as presented, for instance, in[Garey and Johnson, 1979].2



empty sequence of operators. Now we say that plan �0contains a subplan of � of length k according to a mod-i�cation strategy M i� a skeleton � of length k can bederived from � according to M and � can be extendedto �0. In general, we will consider only polynomial-timemodi�cation strategies, i.e., strategies such that verify-ing that the skeleton � can be derived from the plan �is a polynomial-time problem. In the following, we willconsider two di�erent plan modi�cation strategies thatsatisfy this constraint.The �rst alternative we consider is to allow for dele-tions in the original plan and additions before and afterthe original plan. Supposing the plan� = ho1; : : : ; oi; oi+1; : : : ; oj�1; oj; : : : ; oni;the following plan skeleton could be derived from �, forinstance: � = h�; o1; : : : ; oi; oj; : : : ; on; �i;where � has length i + n � j + 1. The correspondingmodi�cation problem will be called MODDEL.Another alternative is to allow for deletion of plansteps in the old plan and additions before, after, and inthe middle of the old plan. Assuming the same plan � asabove, the following skeleton plan of length i+ n� j+ 1could be derived:� = h�; o1; : : : ; oi; �; oj; : : : ; on; �i:The corresponding modi�cation problem is called MOD-DELINS.Finally, it should be noted that although the frame-work we have de�ned above deals only with linear plans,it can be easily modi�ed to apply to nonlinear planning,as well. In particular, all hardness results will apply di-rectly to nonlinear planning since linear plans are simplya special case of nonlinear ones.4 The Complexity of Plan Modi�cationOne almost immediate consequence of the de�nitionsabove is that plan modi�cation cannot be easier thanplan generation. This even holds for all restrictions ofthe PLANSAT problem. If PLANSAT� is a restrictedplanning problem, then MODSAT� shall denote the cor-responding modi�cation problem with the same restric-tions.Proposition 1 PLANSAT� transforms polynomially toMODSAT� for all restrictions �.3However, plan modi�cation is also not harder thanplan generation in the general case.Proposition 2 MODSAT is PSPACE-complete.This proposition could be taken as evidence that planmodi�cation is not harder than plan generation. Howev-er, it should be noted that the proposition is only aboutthe general problem. So, it may be the case that thereexist special cases such that plan modi�cation is harderthan generation. Such a case will not be found amongthe PSPACE- and NP-complete planning problems, how-ever.3Full proofs of propositions and theorems can be found inthe full paper [Nebel and Koehler, 1992].

Theorem 3 If PLANSAT� is a restricted planningproblem that is PSPACE-complete or NP-complete, thenMODSAT� is PSPACE-complete or NP-complete prob-lem, respectively.Proof. PSPACE-hardness and NP-hardness, respective-ly, are obvious because of Proposition 1. Membership fol-lows in case of PSPACE by Proposition 2. In case of NP,we initially guess (1) n (0 � n � j�j+2) possibly emptyplans �i such that j�ij � j�j, (2) 2n states S1; : : : ; S2n,and (3) n polynomially bounded proofs that there existsplans from each state S2i to state S2i+1 for 1 � i � n�1.Since PLANSAT� is in NP, such proofs exist (in mostcases, these proofs will be plans). Then we verify inpolynomial time (1) that S1 = I and S2n satis�es thegoal speci�cation G, (2) thatResult(S2i�1;�i) = S2i, (3)that the plan existence proofs are correct, and (4) thath�1; �;�2; �; : : : ;�n�1; �;�ni is a skeleton of length kthat can be derived from �. This is obviously a nonde-terministic algorithm that runs in polynomial time.The converse of the above theorem does not hold,however. There exist cases when plan generation is apolynomial time problem while plan modi�cation is NP-complete.Theorem 4 There exists a polynomial-time PLANSAT�problem such that the corresponding MODDEL� andMODDELINS� problems are NP-complete.Proof. The planning problem PLANSAT+1 de�ned byrestricting operators to have only positive preconditionsand only one postcondition can be solved in polynomialtime [Bylander, 1991, Theorem 7]. Let PLANSAT+;post1be the planning problem de�ned by restricting oper-ators to have (1) only one postcondition p, (2) thenegated condition p as a precondition, and (3) anynumber of additional positive preconditions. From thespeci�cation of the algorithm Bylander [1991] gives forPLANSAT+1 , it is evident that PLANSAT+;post1 can alsobe solved in polynomial time. We will show that the cor-responding modi�cation problems MODDEL+;post1 andMODDELINS+;post1 are NP-complete.For the hardness part we use a reduction from SAT,the problem of satisfying a boolean formula in conjunc-tive normal form. Let V = fv1; : : : ; vmg be the set ofboolean variables and let C = fc1; : : : ; cng be the set ofclauses. Now we construct a MODDEL+;post1 problemthat can be satis�ed i� there exists a satisfying truthassignment for the SAT problem.The set of conditions P contains the following groundatoms:Ti; 1 � i � m; vi = true has been selectedFi; 1 � i � m; vi = false has been selectedSi; 1 � i � m; the truth value for vi has been selectedEi; 0 � i � m; enable evaluationCj; 1 � n � n; cj evaluates to true.3



Further, we assume the following set of operators O:o+; o� ) o+; o�ti � fTig; ; ) ;; fTigfi � fFig; ; ) ;; fFigsti � fTi; E0; : : : ; Emg; fSig ) fSig; ;sfi � fFi; E0; : : : ; Emg; fSig ) fSig; ;ei � ;; fEig ) fEig; ;posi;j � fTi; E0; : : : ; Emg; fCjg ) fCjg; ;if vi 2 cjneg i;j � fFi; E0; : : : ; Emg; fCjg ) fCjg; ;if vi 2 cj:Assume the following initial and goal state:I = fT1; : : : ; Tm; F1; : : : ; FmgG+ = fE0; : : : ; EmgG� = fT1; : : : ; Tm; F1; : : : ; Fmg:The instance � = hP;O; I;Gi is, for example, solved bythe following plan �:� = ht1; : : : ; tm; f1; : : : ; fm; e0; : : : ; emi:Now consider the instance �0 = hP;O; I0;G0i such thatI0 = IG0+ = fE0; : : : ; Em; S1; : : : ; Sm; C1; : : : ; CngG0� = ;:It is obvious that the SAT formula is satis�able if, andonly if, the plan � can be modi�ed by deleting at mostm operators and adding some operators before and afterthe original plan � in order to achieve a new plan �0that solves �0.Membership in NP follows since PLANSAT+;post1is in NP. Using the same algorithm as described inthe proof of Theorem 3 leads to a nondeterminis-tic polynomial-time algorithm for MODDEL+;post1 andMODDELINS+;post1 .5 Modifying Plans When the Situationsare SimilarThe results above could be considered as being not rel-evant for plan modi�cation in real applications becausewe made no assumption about the similarity between oldand new planning situation. The e�ciency gains expect-ed from plan reuse, on the other hand, are based on theassumption that the new situation is su�ciently close tothe old one|which supposedly permits an easy adapta-tion of the old plan to the new situation. Besides thefact that this looks like a good heuristic guidance, thereis the question whether small di�erences between the oldand the new situation lead to a provable e�ciency gainin terms of computational complexity. So it might beperhaps the case that modi�cation is easier than plan-ning if the goal speci�cations di�er only on a constantor logarithmic number of atoms. Although this seems tobe possible, there is the con
icting intuition that smallchanges in the planning situations could lead to drastic(and hard to compute) changes in the plans.

As it turns out, restricting the number of di�eringatoms does not lead to a di�erent picture than the onepresented in the previous section. First of all, Theo-rem 4 still holds for the restricted versions of the mod-i�cation problems MODDEL and MODDELINS, wherewe require the old and new initial states to be identicaland the old and new goal speci�cation to di�er only onone atom. We call these restricted versions of the mod-i�cation problems MODDEL1G and MODDELINS1G,respectively.Theorem 5 There exists a polynomial-time PLANSAT�problem such that the corresponding MODDEL1G� andMODDELINS1G� problems are NP-complete.Proof. The transformation used in the proof of Theo-rem 4 is modi�ed as follows. A new atom B is added,which is assumed to be false in the initial state I andnot mentioned in the old goal speci�cation G. The newgoal speci�cation G0 is:G0+ = G+ [ fBgG0� = G�:Finally, the following operator is added:fE0; : : : ; Em; S1; : : : ; Sm; C1; : : : ; Cng; fBg ) ;; fBgAlthough this theorem con�rms the intuition thatsmall changes in the goal speci�cation can lead to drasticchanges in the plan, it does not rule out the possibilitythat there are some hard planning problems such thatthe corresponding modi�cation problems are easy if thegoal speci�cation is only changed marginally. In order torule out this possibility, we would need something similarto Proposition 1. Since there appears to be no generalway to reduce PLANSAT� problems to MODSAT1G�problems, we will settle for something slightly less gen-eral. We will show that generating a plan by modifyinga plan for a similar goal speci�cation is at least as hardas the corresponding PLANSAT problem. Hence, in-stead of the decision problem MODSAT1G, we considerthe search problem MODGEN1G. Further, in order toallow for a \fair" comparison between PLANSAT andMODGEN1G, we measure the resource restrictions ofMODGEN1G in terms of the size of the planning prob-lem instance|and ignore the size of the old problem.4Under these assumptions, it is possible to specify a Tur-ing reduction from PLANSAT� to MODGEN1G�.Theorem 6 If PLANSAT� is a restricted planningproblem that is PSPACE-hard or NP-hard, then the cor-responding MODGEN1G� problem is PSPACE-hard orNP-hard, respectively.Proof. Using an algorithm for MODGEN1G�, we cangenerate a plan by modifying it iteratively, starting withthe empty plan and empty goal speci�cation and contin-uing by adding step by step one goal atom. Since the sizeof the goal speci�cation is linearly bounded by the prob-lem instance, we would need only linearly many calls.Supposing that the theorem does not hold would imply4This is necessary to rule out such pathological situationsas the one where modifying an exponentially long plan ap-pears to be polynomial while generating it is exponential.4



that generating a plan under restrictions � is easier thanPLANSAT�, which is impossible by de�nition.It should be noted that we did not rely on any particu-lar property of the MODGEN1G� algorithm. In particu-lar, we did not make the assumption that the algorithmhas to recycle a maximal reusable plan skeleton. Fur-thermore, the above theorems apply, of course, also tothe modi�cation problems that are restricted to have anone-atom-di�erence between the initial states.6 DiscussionOf course, there arises the question of how the aboveresults relate to practical plan modi�cation systems.Kambhampati and Hendler [1992] investigate plan reuseand modi�cation in the framework of the hierarchicalplanner and modi�cation system priar, which is basedon nonlin [Tate, 1977]. They use a large number ofblocks-world examples in order to evaluate the relativee�ciency gains provided by plan modi�cation comparedwith planning from scratch. The average savings of run-time when plans were reused is given by the authors as79%.Hanks and Weld [1992] performed experiments onreusing blocks world plans with their system spa. Thisplan generation and modi�cation system is based on alifted version of McAllester's and Rosenblitt's [1991] sys-tematic nonlinear planning algorithm. In case of the spasystem, the savings turned out to be less drastic thanin the priar system. In fact, in the spa system planmodi�cation can be more expensive than plan genera-tion in terms of runtime if the reuse candidate is notclose enough [Hanks and Weld, 1992, p. 103], a situa-tion that did not happen with similar input data in thepriar system.While the relative savings appear to be di�erent forthe two approaches, in both cases there is a positive ef-fect which increases when the di�erence between the newand the old situations decreases. Although this seemsto run counter to our complexity results (in particularTheorem 6), these empirical �ndings do not contradictour results because the experiments were clearly not de-signed to explore worst-case situations, which complex-ity analysis is about. An interesting avenue of researchwould be to characterize the form of planning problemsthat can exploit plan-reuse techniques to improve thee�ciency of the planning process.What seems to be less easily explainable is, however,the discrepancy between the hope that reusing maximalsubplans increases the e�ciency of plan reuse and our�ndings. Our results imply that conservative plan mod-i�cation introduces some combinatorics into the plan-ning and reuse process. In particular, as a Corollary ofProposition 2 it follows that is not possible to determinee�ciently (i.e., in polynomial time) a maximal reusableplan skeleton before plan generation starts to extend theskeleton.Corollary 7 It is PSPACE-hard to compute a maximalplan skeleton for MODSAT instances.

In other words, plan generation and plan modi�cationcannot be separated. For this reason, the planning pro-cess becomes actually more involved when recycling asmuch of the old plan as possible. Instead of searchingfor an arbitrary solution, a plan that contains a maximalsubplan of the old plan has to be sought.Kambhampati and Hendler [1992] mention conser-vatism, i.e., to \salvage as much of the old plan as pos-sible," as an \important desideratum" for a plan mod-i�cation capability, in order to \ensure e�ciency." Ata �rst glance, this seems to be indeed reasonable sinceit promises to minimize the additional planning e�ort.As we have seen, however, �nding the maximal reusableplan skeleton is already as di�cult as planning and issometimes even more di�cult than the correspondingplanning problem (Theorem 4). Hence, \conservatism"seems to run counter to increasing planning e�ciency.Having a closer look at the priar framework re-veals that plan skeletons are derived in polynomial time[Kambhampati and Hendler, 1992, p. 197] by a processcalled \annotation veri�cation." Hence, by Corollary 7,this process cannot by any means derive maximal appli-cable plan skeletons. Further, the authors do not giveany arguments that they approximate such skeletons. Infact, the skeletons derived by priar are not even guar-anteed to be applicable. So, priar does not seem to ad-dress the problem of \minimally modifying plans," con-trary to what the authors claim.In fact, maximal reuse of an old plan only seems tomake sense in a replanning context if costs are chargedfor not executing already planned steps. So, it seems to bethe case that the two motivations for plan modi�cation,namely, replanning and reuse may not be as similar asone might think. While in plan reuse the e�ciency ofthe planning process is the most important factor, inreplanning the minimal disturbance of the old plan maybe more important, leading to a more involved planningprocess.5Plan modi�cation in the priar framework|and inother plan-reuse systems|seems not to be a computa-tional problem that has to be addressed, but rather asolution, a heuristic technique. The \plan skeleton" thatis reused is not the maximal applicable one, but the onethat the particular planning algorithm perhaps can ex-ploit in generating a solution. In other words, the oldplan is used as an \entry point" into the search spaceof possible plans, as made explicit by Hanks and Weld[1992].7 ConclusionImproving the e�ciency of planning systems by addingcapabilities to modify existing plans has received someresearch interest recently. In analyzing the computa-tional complexity of this problem, we showed that it is5Kambhampati makes the same distinction in a later pa-per [Kambhampati, 1992]. Based on arguments concerningthe search process of a planner, he also argues that guaran-teeing that every step that could be reused is reused could becomputationally expensive|a conjecture con�rmed by The-orem 4.5



as hard as planning and sometimes modi�cation is evenharder than planning from scratch. We showed also thatthese results hold under the restriction that the mod-i�cation process has to account for only one changedatom in the goal speci�cation. In particular, we showedthat deriving the maximal reusable subplan is not easierthan planning. Hence, we cannot hope for minimizingplanning e�ort by �rst identifying the maximal applica-ble subplan which is then (minimally) extended by plangeneration.Relating these results to existing plan reuse and mod-i�cation systems, it turns out that these do not addressthe modi�cation problem at all, although some authorsclaim otherwise. In fact, in plan-reuse systems, planmodi�cation is not attacked as a problem but consid-ered as a heuristic technique. This means that insteadof \using as much of the old plan as possible" these sys-tems recycle \as much of the old plan as the particularplanning algorithm will perhaps be able to use in solvingthe new problem instance." In fact, adopting the prin-ciple of conservatism in plan modi�cation only seems tomake sense in a replanning context where one wants tominimize the perturbation of the original plan.AcknowledgementsWe would like to thank Christer B�ackstr�om, Tom Bylan-der, Subbarao Kambhampati, and the anonymous refer-ees, who provided helpful comments on an earlier ver-sion of this paper. In particular, Tom's remarks andquestions heavily in
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