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ABSTRACT
Event-time based stream processing is concerned with analyzing
data with respect to its generation time. In most of the cases, data
gets delayed during its journey from the source(s) to the stream
processing engine. This is known as late data arrival. Among
the different approaches for out-of-order stream processing, low
watermarks are proposed to inject special records within data
streams, i.e., watermarks. A watermark is a timestamp which
indicates that no data with a timestamp older than the water-
mark should be observed later on. Any element as such is consid-
ered a late arrival. Watermark generation is usually periodic and
heuristic-based. The limitation of such watermark generation
strategy is its rigidness regarding the frequency of data arrival
as well as the delay that data may encounter. In this paper, we
propose an adaptive watermark generation strategy. Our strat-
egy decides adaptively when to generate watermarks and with
what timestamp without a priori adjustment. We treat changes
in data arrival frequency and changes in delays as concept drifts
in stream data mining. We use an Adaptive Window (ADWIN)
as our concept drift sensor for the change in the distribution of
arrival rate and delay. We have implemented our approach on top
of Apache Flink. We compare our approach with periodic water-
mark generation using two real-life data sets. Our results show
that adaptive watermarks achieve a lower average latency by
triggering windows earlier and a lower rate of dropped elements
by delaying watermarks when out-of-order data is expected.

1 INTRODUCTION
Stream analytics is concerned with analyzing data on the move.
Several stream processing engines (SPEs) have been developed
that vary in their processing capabilities. One fundamental fea-
ture is the ability to process data with respect to their generation
time rather than their arrival time at the SPE [2]. This is com-
monly known as event-time versus processing-time. For a data
stream element e , we define te(e) as a function that returns the
timestamp of the event, i.e. the time it was created at the source,
we also define tp(e) to be the timestamp when it was first seen
by the SPE. The event-time notion is more relevant in several
applications. However, as the data sources are distributed and can
be placed far away from SPEs, delays can occur until an element e
reaches the SPE. This is known as late arrival. Moreover, a stream
element can arrive out-of-order. For example, two stream elements
e1 and e2 where e1 was created before e2, i.e., te(e1) < te(e2) can
arrive in the opposite order, i.e., tp(e2) < tp(e1). This is known
as out-of-order arrival.

Stream analytics jobs are usually defined by a sort of a win-
dow [4, 5, 7]. Windows are used to slice the infinite stream into
finite chunks and apply the analytics computation, e.g. averaging,
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a.k.a window function, on the content of the window. Time win-
dows are common types of windows that define stream element’s
membership to the window based on the elements timestamp
w.r.t. window start and end times, when working in event time.
The window function cannot be applied on the window content
until the SPE decides that the window is closed. For system (pro-
cessing) time mode, the decision is made when the internal clock
(wall clock) of the SPE passes the window end. However, for
event time processing, we need an external notion progress.

Low watermarks generation [1, 2] is a technique to account
for the progress in event time. A watermark is a timestamp that
indicates that there should be no future data older than the wa-
termark to be seen. When a watermark is received by a window
operator in a pipeline, it triggers executions of completed time
windows whose closure completed at a time earlier than the wa-
termark. A watermark is monotonic. That is, a new watermark
cannot be less than the last generated watermark. Watermark
progress affects two metrics in stream processing: latency and
late arrival of data items and thus accuracy. Latency is hurt when
too few watermarks are generated. Late arrival increases when
too many watermarks are generated and thus accuracy decreases
due to more elements being ignored (dropped).

Currently, watermark generation is either heuristic-based and
periodic [1, 2] or punctuation-based [11]. The latter assumes
knowledge about the content of the data. The former is inflexible
with the change of the distribution of data arrival rate or the
distribution of the delays in arrival. Those are unique proper-
ties of data streams. In this paper, we contribute an approach to
watermark generation that is data-content-agnostic. We call our
approach as adaptive watermarks. By treating the change in the
skewness between stream elements event time and processing
time as a concept drift, we employ a drift detection technique,
the adaptive window (ADWIN) [3, 6], to decide when to generate
a new watermark and with which value. Moreover, we provide
another control, late arrival threshold, to decide about the water-
mark generation. We implement our approach on Apache Flink
and compare it with a baseline periodic watermark generator
using two real-life data sets. Our experiments empirically prove
the superiority of adaptive watermarks with respect to a reduced
latency and/or a reduced number of dropped elements.

2 ADAPTING TO DATA ARRIVAL RATES
2.1 Baseline: Periodic Watermark Generation
Periodic watermark generation is a heuristic-based approach.
Heuristically, application developers determine a max allowed
latenessm. With the arrival of a new event, the maximum times-
tamp seen is updated. Then, every s milliseconds, the SPE obtains
the maximum timestamp t seen so far. The watermark value is
t −m. New stream elements that arrive after the watermark are
considered late. Depending on the configuration of the stream
processing pipeline, such elements can still be included in the



Table 1: Parameters used for watermark generators

Parameter Description
δ* Sensitivity to change ∈ [0, 1]. Default is 1.
l Late arrival threshold, l ∈ (0, 1]. Default is 1.
m* Skewness between event time and ingestion time.
∆δ Sensitivity change ratio, ∆δ ∈ (0, 1]. Default is 1.
w Warmup tuples used to initializem.

Parameters with * are derived by the system

result or ignored. This approach is simple to implement. How-
ever, it is does not adapt to changes in 1) the arrival rate of data
elements, 2) the lateness of elements.

2.2 Adaptive Watermark Generation
In practice, it would be desirable to learn bothm, the lateness, and
the period s for generating a new watermark and keep updating
them as new elements arrive. Moreover, to account for high
correctness, one would hold the generation of new watermarks if
the ratio of late arrival elements to the total elements goes above
a certain threshold l since the last generated watermark. In this
situation, the period s at which a watermark is generated will
change (adapt) according to the change in the distribution of data
inter-arrival time. Similarly,m can be learned upon each change
detection. The change of the inter-arrival time can be seen as
a concept drift in data streams [10]. In our case, the drift to be
detected is the change of events’ inter-arrival time. To detect this
drift, we employ the ADWIN algorithm [3].

ADWIN is an algorithm which detects concept drifts (e.g.,
changes in users opinions) and enables adapting machine learn-
ing models on data streams. It works by maintaining a window of
data items over time. The size of the window changes over time
based on the frequency of change detected in incoming data. The
algorithm does not require a pre-determined period to trigger
change detection. It checks for drifts on a per-tuple basis. The
more change occurs, the smaller the size of the window as older
items are considered irrelevant and dropped. The algorithm has
a single parameter δ (Table 1) which controls the sensitivity to
change. The higher the value of δ the more sensitive it will be to
change. In our work, δ is by default set to 1 so that a change is
detected as early as possible.

ADWIN works as follows: Upon the arrival of a tuple, it is
added to the window. Then, the algorithm tries to detect a change
by finding two sub-windows whose value distributions are sig-
nificantly different with respect to δ . Here, ADWIN iterates over
all possible combinations of sub-windows. As an optimization,
ADWIN maintains histograms (buckets) of the sum and variance
of the data rather than the data itself to have a better memory
footprint. The histogram grows logarithmically to the number
of data points. Grulich et al. [6] parallelize different parts of the
original algorithm and reach two orders of magnitude enhance-
ment of its throughput. Table 1 summarizes the parameters we
use for the adaptive watermark generation technique.

Algorithm 1 describes how we employ change detection by
ADWIN to adapt the generation of watermarks. At the arrival
of a new element, that might be late, the difference between the
new element’s timestamp and its ingestion timestamp is inserted
into ADWIN and a check is made for detection of a change (drift)
(Line 12). Such a detection can be an indicator to generate a
new watermark. It is not necessary that every change detection
leads to the generation of a new watermark. We need to look
at the second indicator which is the rate of late arrivals. A new

Algorithm 1: Adaptive watermark generation
Input: A data stream S
Input: Sensitivity change rate ∆δ
Input: Late arrival threshold l
Input:Warmup tuples countw

1 warmup ← 0;m ← 0;watermark ← 0;
2 lateElements ← 0; totalElements ← 0; δ ← 1
3 maxTimestamp = −∞

4 adWin ← initializeAdWin(δ )

5 foreach e ∈ S do
6 maxTimestamp =max(te(e),maxTimestamp)

7 if warmup ≤ w then
8 m ←max(m, tp(e) − te(e))

9 warmup ← warmup + 1
10 else
11 totalElements ← totalElements + 1
12 if adWin.dri f tDetected((tp(e) − te(e))/m, δ )

then
13 if lateElements = 0 then
14 δ = increaseSensitivity(∆δ )

15 if lateElements/totalElements < l then
16 watermark =maxTimestamp −m

17 emit(watermark)

18 lateElements ← 0
19 totalElements ← 0
20 else
21 m ← updateSkewness()

22 δ = decreaseSensitivity(∆δ )

23 else
24 if te(e) < watermark then
25 lateElements ← lateElements + 1

watermark is generated only if this rate is less than the threshold
l at the time of change detection (Line 15). This rate is reset each
time a new watermark is generated.

We call the elements collected between two successive wa-
termarks a chunk. The value of m is the maximum difference
between elements’ ingestion and event time within the chunk
(Line 21). The value of the newwatermark ismaximum timestamp−
m (Line 16). Upon the generation of a new watermark, all data
about late arrival is reset (Lines 18 and 19). In case a chunk has
no late arrivals, the sensitivity is increased (Line 14) to speedup
change detection. However, upon crossing the late arrival thresh-
old l , δ is adapted according to the δ∆ parameter (Line 22).

As ADWIN is designed to work with values in the range [0, 1],
we need to normalize the deviation between element’s event
and ingestion times. For this, we use the first w tuples of the
stream to learn about m (Line 7). That can be in the form of
minimum, maximum, or average skewness observed between
elements’ event time and ingestion time.

For the adaptive watermark generation, the user needs to
specify the late arrival threshold l , the sensitivity change ratio δ∆,
and the warmup tuplesw . The default values for these parameters
are 1, 1, and 10000 tuples, respectively. The choice of a value of l
is mainly driven by the accuracy expected by the application. The
more accurate results expected, the lower the value of l should
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Figure 1: Example for adaptive watermark generation versus periodic generation.

be. If the source is stable and does not produce considerable
late arrivals, the low value of l should not affect the latency of
the results. Otherwise, lower values of l shall affect the latency,
but this should be acceptable as the main concern is accuracy.
Sensitivity to change δ∆ is effective only in case that late arrivals
rate is above l . In such case, δ is decreased and thus ADWIN will
have to observe a larger number of elements before detecting a
change. The value of w affects latency as for the first w tuples,
no watermarks are generated and thus no window contents is
processed. Larger value of w could be used with data sources
with out-of-order arrivals. In Algorithm 1, we use the maximum
skewness observed to updatem. However, this can be changed
to average or other measures.

Example: Figure 1 exemplifies how adaptive watermark gener-
ation works in comparison to the periodic one on a hypothetical
stream. Vertical lines represent stream elements with their pro-
cessing and event time respectively. The periodic generator is
configured with s = 3 seconds andm = 5 seconds. The adaptive
generator is configured with l = 0.5, ∆δ = 1 andw = 3. The pe-
riodic generator will generate watermarks at tp = 103, tp = 106,
and tp = 109 with values 95, 98, and 101, respectively. The ele-
ments arriving at tp = 105, tp = 107 and tp = 109 are late. For
the adaptive generator, the first three tuples are used to initialize
m; which is set to 6, as the max skewness observed between tp
and te . At tp = 103, ADWIN detects a change. As there are no
late arrivals, a watermark is generated with the value 94. At time
tp = 106, another change is detected and a new watermark is
generated with value 97. The next element at tp = 107 is late.
ADWIN detects another change at time tp = 108. At this time,
no watermark is generated as the late arrival ratio is equal to
0.5. Also, at this time, m is updated to 11, the skewness between
tp = 107 and te = 96. At tp = 110, ADWIN detects another
change. A watermark is generated as the late arrival ratio drops
below 0.5.

3 EVALUATION
Setup:We have implemented adaptive watermark generation on
top of Apache Flink v1.6.2, using the Source APIs to control the
emission of watermarks. Our code base for the implementation
and experimental evaluation can be found online1. We run our
experiments on a standalone cluster with 6GB of main memory
and 4 cores at 2 GHz.
Data and query: For the comparison between adaptive and
periodic watermark generation, we use two data sets from the
DEBS grand challenges of 2012 [8] and 2015 [9] respectively. The
DEBS 2012 data set has 32,390,519 tuples and 1.5% of the elements
arrive out-of-order with an average of 100 tuples per second. The

1https://github.com/DataSystemsGroupUT/Adaptive-Watermarks

Table 2: Metrics for periodic watermark generation
Data- Allowed Period Win. Dropped Avg.
set lateness size % win. delay

(ms)
DEBS 1000 200 1000 1.24 9,452,454
2012 100 1.24 3,083,109

100 10 1000 1.50 713,846
100 1.50 175,497

DEBS 1000 200 1000 98.72 644,046,759
2015 100 98.62 648,821,195

100 10 1000 99.93 546,682,126
100 99.97 392,904,397

DEBS 2015 data set has 14,776,616 tuples and has 78.6% of its
tuples arrive out-of-order. Moreover, the arrival rate of the data
varies along the data set with an average of 6 tuples per second.
For both of the data sets, we project the timestamps and create
events with dummy content and the timestamps projected. We
use a simple pipeline that applies a count function on the content
of a time window. We report the window boundary, start and
end, the number of elements in the window and the difference
between window end and the watermark. The resulting tuples
are of the form ⟨start, end, count,delay⟩. We use these values to
construct the comparison metrics as we show next.
Metrics: We measure two metrics: the percentage of dropped
elements and the average delay between a window end and the
watermark after which the window function was triggered. We
call it the window delay and report it in milliseconds.
Parameters: For the periodic watermark generator, we set the
value for the generation period s ∈ {10, 200}ms . For the allowed
lateness,m ∈ {100, 1000}ms . For the adaptive watermark gen-
erator, we set w the number of tuples to initialize m to 10000,
we set the late arrival threshold l and the sensitivity change rate
∆δ to one of {1.0, 0.1, 0.01}, see Table 1 for descriptions of the
parameters. For the size of the time window in the query, we
vary it between 100 and 1000 milliseconds.
Results: For the data collected after running the pipeline for each
unique combination of configuration parameters, to compute
results we: 1) drop out result tuples for which the watermark is
Long.MAX_VALUE. Flink generates a watermark with this value to
flush any windows that were waiting for a watermark to trigger
its computation, 2) count the number of tuples (count above) and
subtract that from the total number of tuples we have in the
respective data set to obtain the tuple drop percentage, and 3)
average the delay over the computed windows remaining after
step 1. Table 2 shows the results for the periodic generator and
Table 3 shows the results for the adaptive one.

For the DEBS 2012 data, the periodic generator provides lower
delay for the shorter watermark generation period. But, with

https://github.com/DataSystemsGroupUT/Adaptive-Watermarks
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Figure 2: Evaluation of adaptive watermark generation

Table 3: Metrics for adaptive watermark generation
Dataset ∆δ l Win. Dropped Avg.

size % win. delay
(ms)

1 DEBS 1 1 1000 1.49 23,633
2 2012 1 1 100 1.49 16,796
3 1 0.1 1000 1.24 1,853,667
4 1 0.1 100 1.24 1,847,622
5 1 0.01 1000 1.17 2,467
6 1 0.01 100 1.17 2,469
7 0.1 1 1000 1.49 22,905
8 0.1 1 100 1.49 16,796
9 0.1 0.1 1000 1.24 1,851,629
10 0.1 0.1 100 1.24 1,847,523
11 0.1 0.01 1000 1.17 2,472
12 0.1 0.01 100 1.17 2,471
13 DEBS 1 1 1000 79.60 72,863,504
14 2015 1 1 100 79.60 72,863,574
15 1 0.1 1000 44.14 33,826,576
16 1 0.1 100 44.14 33,827,281
17 1 0.01 1000 43.82 45,279,068
18 1 0.01 100 43.82 45,279,328
19 0.1 1 1000 85.52 51,965,257
20 0.1 1 100 85.52 51,965,876
21 0.1 0.1 1000 44.42 36,007,475
22 0.1 0.1 100 44.42 36,007,727
23 0.1 0.01 1000 41.64 92,672,393
24 0.1 0.01 100 41.64 92,673,050

higher drop rate. This is logical because of the trade off between
tuple drop percentage and window delay. In the case of the adap-
tive watermark generator, with the default configuration (rows
1&2 in Table 3), it has almost the same tuple drop percentage as
the periodic generator but with at least an order of magnitude im-
provement in window delay. Setting late arrival threshold l = 0.1,
the tuple drop percentage is decreased but with two orders of
magnitude higher window delay (rows 3&4). Yet, the delay is still
below the delay of the periodic generator with the same tuple
drop percentage. Setting l = 0.01 improves the tuple drop per-
centage by 0.07% and with very low window delay (row 5). This
might look counterintuitive. But, by investigating the data for
this configuration, we found that several windows were just fired
by the termination of Flink’s job. Thus, we had fewer windows
that were processed due to the generated watermarks. This is
logical as with a lower value of l , less number of watermarks is
generated in general. Table 3 shows that changing the value of
∆δ for the DEBS 2012 data does not have much of an effect and
the results are almost identical. The control is mainly driven by l .

For the DEBS 2015 data set, we can see that the periodic gen-
erator drops almost all the tuples for the different configura-
tions (Table 2). The window delay is very huge. Using the adap-
tive generator, with the default configuration (rows 13 and 14 in
Table 3), we achieve a drop rate close to the percentage of the
out-of-order tuples in the data set. However, the delay is an order
of magnitude less than the periodic generator. Restricting the
late arrival threshold to 0.1 reduces the tuple drop percentage
and reduces the window delay by about 50% (rows 15 and 16).
Pushing l to 0.01 reduces the tuple drop rate slightly but with
an increase in window delay. The least tuple drop percentage is
achieved when ∆δ = 0.1 and l = 0.01 but with higher window
delay (row 23). Figure 2 visualizes the tuple drop percentage and
the average window delay for the different parameter values of
the adaptive generator.

Our experimental results show the superiority of adaptive
watermarks to baseline periodic ones. For both ordered and un-
ordered streams, less tuple drop rate as well as several orders of
magnitude saving in window delay.

4 CONCLUSION
In this paper, we have proposed an adaptive approach for gener-
ating low watermarks for event-time stream processing. It adapts
to changes in data arrival frequency as well as to late arrival ratio.
Compared to the baseline heuristic periodic watermark genera-
tion, and as indicated by application on data sets with different
arrival frequency and delay characteristics, our approach strikes
a balance between latency and accuracy of stream applications.

Currently, setting the late arrival threshold to very low per-
centage ceases the generation of the next watermark until the
threshold is reached. This might be inconvenient and might cause
high-latency. We intend to investigate an automated approach
that automatically balances between latency and accuracy with-
out having the user to specify threshold explicitly.
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