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Abstract. Businesses can benefit greatly from analysing their document
assets. These can vary greatly from plain text messages across customer
support tickets to complex message exchanges and workflow logs within
countless business transactions. Decoding text-based domain knowledge
can be a challenging task due to the need for a comprehensive representa-
tion and evaluation of the business process ontology, activities, rules and
paths. To provide an adequate process coverage, significant time and
monetary resources should be invested as well as a high maintenance
portfolio, especially for large processes and environments that change
dynamically. This work investigates a novel natural language process-
ing path which combines Case-based Reasoning and Deep Neural Net-
works. Our aim is to minimize the effort from domain experts while
extracting domain knowledge from rich text, containing domain abbre-
viations, grammatically incorrect text and mixed language. Our proposed
approach seems promising and a possible future direction in the industry.

Keywords: Textual Case-based Reasoning, Deep Neural Networks, Natural
Language Processing, Similarity Measures

1 Introduction

Unstructured text is one of the major challenges in automatic knowledge extrac-
tion due to text multi-provenance, complex unrelated sources and domain fuzzi-
ness. User language can complicate this process further by introducing grammar



errors, writing in mix (multi)languages and by implying concepts that lead to
domain ambiguity.Examples of such lexical content ambiguity can be due to dif-
ference in intended meaning for the same word, word synonymy (different terms
have similar meaning, or text context that affects the meaning of specific words)
and others making traditional NLP techniques inadequate to process it.Textual
CBR (TCBR) is a CBR [2] sub-branch which is related to Textual Data. Re-
search in the area shows cases where researchers need to be able to build both
cases and similarity measures empirically out of their data corpus in order to be
able to retrieve the most similar cases. The aforementioned challenges are not
new to the TCBR domain, however the current challenges in text richness, data
volume and fuzziness urge for disruptive approaches in order to be able to tackle
them efficiently.

This work introduces a comparison between fastText word embeddings ap-
proach and Word2vec that was presented in a previous work on top of Deep-
KAF framework [20]. The main motivation for this work is to investigate how
Deep Learning models can help in decoding complex textual domain knowledge
and build efficient similarity measures while requiring the minimum possible in-
put from domain experts. Deep Learning models are effective when dealing with
learning from large amounts of structured or unstructured data. Within the CBR
paradigm, Deep Learning models can benefit from the available amounts of data
and extract meaningful abstract representations. While Deep Learning can learn
from large volumes of labeled data, it can also learn from large amounts of unla-
beled/unsupervised data [3][4][5], making it attractive for extracting meaningful
representations and patterns from Big Data.

The growth of intensive data-driven decision-making has led to extensive use
of Artificial Intelligence (AI) technologies [1] since they seem capable to improve
it further. Within the Case-based Reasoning community there have been several
examples of applying data-driven methods to dynamically improve business deci-
sion making. Following its business needs the customer support industry has also
adopted a data-centric approach, as companies turn to a priory collected data to
optimise their business workflows and the quality of their services[1]. This work
extends the Deep Knowledge Acquisition Framework (DeepKAF) which has
been designed to build CBR systems that are applied in real-world industrial
domains. CBR is superior to Black-box techniques in several industrial domains
where the explainabiltiy of decisions is necessary. However, building successful
CBR systems requires substantial effort from the domain experts which causes
significant overheads most of the time. DeepKAF is addressing these issues asso-
ciated with building CBR systems in industrial domains with promising results
as it can be seen from previous work (cite DeepKAF paper, and potentially the
AI conference Paper).

This paper is structured as follows: Section 2 describes the neural network
text embeddings that are used throughout this work. Section 3 presents our ap-
plication domain. Section 4 presents the followed methodlogy. Section 5 presents
the carried-out evaluation with domain experts to ensure the efficiency of our



proposed approach. Section 6 discusses the related work followed by the sum-
mary, conclusion and future work in Section 7.

2 Neural Word Embeddings

Most of the Deep Learning models aren’t able to process strings or plain text
since they require numerical inputs for tasks such as classification, regression,
etc... Several NLP systems and techniques treat words as atomic units, there-
fore, in order to apply a Deep Learning model on NLP, words to be converted
to vectors. ”Embedding” words or generating word embeddings is the process
of converting text into a numerical representation for further processing. The
different types of word embeddings can fall into two main categories:

1. Frequency-based embedding (FBE):
FBE algorithms focus mainly on the number of occurrences for each word,
which requires a lot of time to process and exhaustive memory allocation
to store the co-occurrence matrix. A severe disadvantage of this approach is
that important words may be skipped since they may not appear frequently
in the text corpus.

2. Prediction-based embedding (PBE):
PBE algorithms are based on Neural Networks. These methods are prediction-
based in the sense that they assign probabilities to seen words. PBE algo-
rithms seem the present state of the art for tasks like word analogies and
word similarities.

PBE methodologies were known to be limited in their word representations
until Mikolov et al. introduced Word2Vec to the NLP community [7]. Word2vec
consists of two neural network language models: A Continuous Bag of Words
(CBOW) and Skip-gram. In both models, a window of predefined length is moved
along the corpus, and in each step the network is trained with the words inside
the window. Whereas the CBOW model is trained to predict the word in the
center of the window based on the surrounding words, the Skip-gram model
is trained to predict the context based on the central word. Once the neural
network has been trained, the learned linear transformation in the hidden layer
is regarded as the word representation.

Facebook Research open sourced their Word Embeddings model fastText
[19]. fastText is essentially an extention of Word2vec model, which treats each
word as collection of character ngrams. Word2Vec differs from fastText in terms
of how it deals with words: Word2Vec ”learns” vectors just for complete words
(as found in the training corpus) while fastText learns vectors for the n-grams
found within each word, as well as each complete word.

The differences in representing words and sentences make fastText able to: 1.
Generate better word embeddings for rare words (Word2Vec is highly dependant
on the number of occurrences per each word to decide whether it will be included
in the embeddings or not) 2. fastText is able to construct a vector for a word



based on its character ngrams even if the word doesn’t appear in its training
corpus.

In previous work [20], Word2vec model has been implemented using an LSTM
network. In this work, we will implement the fastText model and compare the
results.

3 Application Domain

Most companies have several dedicated internal Help-Desk teams for customer
support since service quality is usually measured via customer satisfaction. For
this work the implemented application and any used data is a joint applica-
tion between the German Research Center for Artificial Intelligence (DFKI) and
a Multinational Automotive Company (the company) located in Munich, Ger-
many with branches all over the world. Inside the company, most of its help-desk
tickets come through emails to dedicated help-desk teams. Once received, help-
desk agents prioritize the tickets and assign them to specialist engineers inside
the team to work on it. The company had several historical datasets describing
a plethora of issues they have happened in the past along with proposed solu-
tions to those. A historical case could be represented in the form of Problem
Description, Solution and Keywords. When new tickets arrive, a help desk en-
gineer should search within the company’s knowledge base to confirm whether
any solution(s) exists or not.The text presented in this case is written in mixed-
language mode (German + English), loosely connected grammar and lots of
domain specific abbreviations. As reported by domain experts, their processes
in place were suffering from a number of issues:

1. A help-desk agent prioritizes or routes a ticket wrongly. Such an action usu-
ally leads to longer resolution times

2. Lack of enough experience or specialized knowledge from a help-desk engi-
neer

3. Substantial difficulty to find a suitable solution from a historical knowledge
base. The vast majority of engineers have found it detrimentally time con-
suming and not always capable of finding a solution

4 Methodology

Previous work on DeepKAF [20] has focused on two main neural networks: 1. An
LSTM Network used to prioritize the input text 2. An LSTM network used to
do further classification on the tickets and then measure the similarity between
two texts using the Word2Vec word embeddings model.

DeepKAF has been proven effective in the task of finding the most simi-
lar cases compared to the traditional key nearest neighbour algorithm which is
typically used during a CBR retrieval process. This work uses fastText word
embeddings model instead of Word2Vec and compares the performance between
the two.

For the needs of this work the Case-based cycle is defined as:



1. Case Generation: Since there were not too many attributes, cases were gen-
erated with flat attribute-value representation features

2. Case Retrieval: Due to the complexity of Natural Language Processing (NLP)
case similarities required a rich context-aware similarity measure. As such a
trained neural network for identifying and recommending solutions from the
historical case base was selected.

3. Case Adaptation: Adaptation rules are not included during this implemen-
tation but should be added in the next phases.

4.1 Applied Model Structure

Model optimization is one of the greatest challenges in the implementation of
machine learning solutions. Hyperparameters play a vital role in building fast-
Text models. During building the fastText model and based on previous work
on DeepKAF and other work that implemented fastText, the hyperparameters
are as follows:

1. ngram = 2 (fastText specific parameter)
2. Embedding Dimension = 300
3. Layer Size = 200
4. Iteration = 1

These hyperparameters are defined after several trials upon which we have
been comparing the outcomes.

4.2 DeepKAF: The Solution Architecture

DeepKAF solution architecture consists of three main modules (See Figure 1):

1. Input Process (Data Generation) Module: This module is responsible for
generating and simulating the emails (tickets) stream.

2. Map/Reduce -Hadoop- Cluster (Data Processing & Retrieval): This mod-
ule is responsible for receiving the tickets and doing the ticket content pre-
processing/processing, then retrieve the similar tickets from the Case Base
(Case Generation, Retrieval & Retain).

3. Graphical User Interface (Data Visualization): This module is responsible
for visualizing the results to the system end-users.

4.3 The Hybrid CBR Approach with LSTM & fastText Word
Embeddings

This work combines a Deep Neural Network with CBR to capture and decode
domain knowledge with the help of applied Deep Learning algorithms in the
context of Natural Language Processing (NLP). In our domain emails are being
prioritised based on their content and text similarity is measured based on their
semantics. We present several Neural Network types to represent a sequence of



Fig. 1. DeepKAF Solution Architecture

sentences as a convenient input for our different models. First, we divided the
emails into sub-groups based on the business sectors they were coming from.
The first stage was the ticket pre-processing, which was divided into five main
processes:

1. P1: Input Process (Data Generation): was responsible for generating and
simulating the emails (tickets) stream

2. P2: Prioritization process: was prioritizing incoming tickets based on histor-
ical cases and their recorded priorities

3. P3: Greetings filter: which identified and eliminated any unnecessary text
(ex. greetings, signatures etc.) from any email

4. P4: Stemming and stop words elimination: in either German or English lan-
guage

5. P5: Text vectorization

During the implementation of the first release of DeepKAF, several ap-
proaches have been applied. Initially, Support Vector Machines (SVMs) and
Vectorization were used to prioritize emails, however, when the case complexity
has risen, different Deep Neural Networks Models were applied on an experi-
mental basis: eg. CNNs, RNNs and LSTMs. LSTMs [9] seemed to outperform
all the other models. This work uses LSTM to do pre-processing and trim out
unnecessary text parts. LSTMs do also a primary filtering of the incoming text



(Process: P2 & P3), and the fastText is used during the retrieval process to
measure similarity among different cases.

4.3.1 Vocabulary Containers Vocabulary is one of the knowledge contain-
ers and represents the information collected from the domain to express knowl-
edge [10]. By filling in this container we identify terms that are useful for the
main system tasks. The acquisition of the domain vocabulary has direct effect
on the system performance, and that’s why it is usually done with intensive help
from domain experts. As mentioned in Section 3.2 utilizing several experts to
manually assist with decoding domain knowledge was rather expensive, there-
fore an alternative was sought. In order to improve the acquired vocabulary, we
followed the typical three methods described in [6]. We have used neural net-
works to remove irrelevant words and extracted the main features that represent
certain text using the fastText model [19].

4.3.2 Neural Word Embedding Most of the Deep Learning models aren’t
able to process strings or plain text. They require numbers as inputs to perform
any sort of job, classification, regression, etc... Most existing NLP systems and
techniques treat words as atomic units in order to apply a Deep Learning model
in NLP, we need to convert words to vectors first. Word embedding is the process
of converting text into a numerical representation for further processing as shown
in section 2.

4.3.3 Text Pre-Processing In the Text Pre-Processing stage, raw text cor-
pus preparation tasks are taking place in anticipation of text mining or NLP. We
trained our Word2Vec model over the ticket corpus overall to build cases used
in similarity measures. As any text pre-processing tasks, we have two main com-
ponents: 1. Tokenization, 2. Normalization. Tokenization is a step which splits
longer strings of text into smaller pieces, or tokens. Normalization generally
refers to a series of related tasks meant to put all text on a level playing field:
converting all text to the same case (upper or lower), removing punctuation,
converting numbers to their word equivalents, and so on. Normalization puts all
words on equal footing, and allows processing to proceed uniformly. Normalizing
text can mean performing a number of tasks, but for our approach, we will apply
normalization in four steps: 1. Stemming, 2. Lemmatization 3. Eliminating any
stopping words (German or English) 4. Noise Removal (e.g. greetings & signa-
tures). In essence we can consider the Word2Vec model or any other model that
could be built as a substitution to the traditional taxonomies.

4.3.4 Similarity Measures Similarity measures are highly domain depen-
dant and used to describe how cases are related to each other. For our system we
defined two types of similarity measures: Local Similarity Measures and Global
Similarity Measures. Local Similarity Measures describe the similarity between



two attributes and the Global Similarity Measures describe the similarity be-
tween two complete cases. In the next section we present how we applied Local
Similarity Measures followed by Global ones.

Local Similarity Measures: Based on the collected data and discussions
with experts, we defined the local similarity measures. We have mainly four
distinctive attributes excluding the email subject and content. For the Priority
(integer) and Sending Groups (distinctive strings) we used distance functions.
For the email subject and content, a word embeddings model was used to help
finding the the degrees of similarity among distinctive texts, after applying all
the aforementioned prepossessing tasks.

Global Similarity Measures: Global Similarity Measure define the re-
lations among attributes and give an overall weight to the retrieved case. The
weight of each attribute demonstrates its importance within the case. We de-
cided to use the weighted euclidean distance for the calculation of the global
similarity as applied in [8] . The weight of each attribute has been defined in col-
laboration with the domain experts. We decided to use a weight range between
1 and 5. The most important values are weighted with 5.0 and 4.0 determined
by the experts on which attribute value they would use to evaluate the case.
They have decided to give the following weights to the attributes (Priority =
2.0, Email Content = 4.0 or 5.0, Email Subject = 2.0 or 3.0, Sending Group =
3.0 or 4.0). After giving the weights to the attributes we then sum up the given
weights to come up with the overall global case similarity.

5 Experimental Evaluation

DeepKAF [20] was evaluated using the following criteria (Each neural network
uses fastText to perform its tasks) :

1. The case priority given by a neural network
2. The retrieved cases and suggested solutions to a new case

As mentioned in section 3.3, LSTM model is used to do the pre-processing
tasks and prioritize the incoming tickets and it scored a total F1 score: 92.16% in
prioritizing tickets correctly. The new experiment carried out in this research is to
use the fastText model in the retrieval process and compare it with the Word2vec
model that was used before. fastText was applied to vectorize text input and
build word representations in the vector space (See Figure 2). Sequences of such
vectors were processed using various neural net architectures.

5.1 Dataset Characteristics

fastText was built using 300,000 historical tickets in an unsupervised training
mode. To train the LSTM model, we needed a labeled dataset containing pairs
of sentences and an attribute to identify the similarity degree between those two



Fig. 2. Text Vectorization

sentences. For that goal, we have prepared a manually generated dataset based
on historical data which contained 5000 pairs of sentences and have assigned a
degree of similarity that varied between 1:5 for each pair.

Table 1 shows a comparison in retrieval results between the Word2vec model
that implemented in [20] and fastText model. DeepKAF suggested ten solutions
to a new ticket, and then experts were called to decide where the most relevant
solution was positioned among the retrieved ten. We defined also four levels
that the most relevant solution could belong to. These were: 1. one:three 2.
four:seven 3. eight:ten 4. Not Listed. For the evaluation we used 10000
Test Tickets that were used in the Prioritization stage.

Table 1: Retrieval Results

Word2vec fastText
Level Number of Cases Percentage Number of Cases Percentage
One : Three 7764 77.64% 5144 51.44%
Four : Seven 1468 14.68% 1431 14.31%
Eight : Ten 692 6.92% 1682 16.82%
Not Listed 76 0.76% 1743 17.43%

5.2 Results Discussion & Lessons Learned

From Table 1, we can summarize the findings as the following:

1. From a practical perspective, the choice of hyperparameters for generating
fastText embeddings becomes key since the training is at character ngram
level. That’s one of the reasons why fastText might be giving worse results
than Word2vec

2. fastText training takes longer to generate embeddings compared to word2vec

6 Related Work

The related work to this research, is defined on the following three areas: 1. Text
processing issues with incorrect sentences and mixed languages 2. Help-desk
CBR systems 3. Automation of text relation extraction.

Text processing and analysis is considered a ”must-have” capability due to
the immense amount of text data available on the internet. Textual CBR is
the type of CBR systems where the cases are represented as text. The text
representation brings several challenges when the text is unstructured or has
grammatically incorrect sentences. The task of the approach described in our
research can be compared to the work presented in [11][12][13], the authors used
a hybrid CBR approach where they combined CBR with NLP frameworks to



be able to process the knowledge written in free text. They mentioned to the
issues they faced with the free text or to extract features and build accurate
similarity measures. In our work, NLP frameworks were not able to process
text spanned across different languages and there were several issues related
to accurate sentence parsing. Therefore, we applied a different approach using
Deep Neural Networks to ease the task of finding similarities between cases and
automate the knowledge from textual cases.

HOMER [14] [15] is a help desk support system designer for the same purpose
of DeepKAF. HOMER used an Object Oriented approach to represent cases
and used a question-answering approach to retrieve cases. HOMER showed very
good results when it first presented in 1998 and after its further improvement in
2004. However any existing fast-pace work environments demand solutions that
are able to deal with big amounts of data in real time with minimum human
interference. Comparing to DeepKAF, we focused more on how to automate the
extraction of similarities and deal with unstructured or mixed-languages text,
but this approach also can’t be automated to be integrated in the real business
environments.

Finding the relation between text and extract features are key criteria in
the success of any textual CBR system. These tasks require a lot of effort and
normally can take a long time to be done accurately. Different approaches have
been presented to build text similarities and find higher order relationships [16].
The work of automating knowledge extraction using Neural Networks can be
compared to the work presented in [17] where authors represented the text using
dubbed Text Reasoning Relevant work has been seen in Graph (TRG), a graph-
based representation with expressive power to represent the chain of reasoning
underlying the analysis as well as facilitate the adaptation of a past analysis to
a new problem. The authors have used manually constructed lexico-syntactic
patterns developed by Khoo [18] to extract the relations between texts.

7 Summary and Future Work

This paper presents a new experimental version of DeepKAF, a hybrid CBR sys-
tem that uses Deep Neural Networks to assist in automatic feature extractions
from text and define similarity across text. Facebook fasttext has been applied
to measure similarity across unstructured text tickets and compare the retrieved
results with Word2vec. The applied Hybrid CBR approach has proved the effi-
ciency of using Deep Neural Networks within CBR paradigm. Word embeddings
along with Deep Neural Networks can help TCBR systems by building stronger
relationships across textual cases and measure similarities with minimal input
from domain experts. However, such an approach hides part of the explainability
of CBR. Our main goal through this research was to show how a hybrid approach
using deep learning and CBR can be competent in dealing with complex tasks.
Such an approach seems appropriate to deal with high volumes of data that need
to be processed fast and in real-time.



Siamese Networks are the next step for this research. Siamese networks are
a special type of neural network architecture. Instead of a model learning to
classify its inputs, a neural network learns to differentiate between two inputs
and understand the similarity between them. Siamese neural architectures seem
capable of demonstrating high accuracy in predicting similarity degrees across
objects of high complexity. This approach should be experimented and tested to
see how efficient it could be in helping minimizing the initial effort that should
be exerted to prepare natural language data.
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