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Abstract
One of the main quality impairments in today’s packet-based
voice services are interruptions caused by transmission errors.
Therefore, most codecs comprise concealment algorithms that
attempt to reduce the perceived quality degradation of missing
speech packets. In case the algorithm fails to properly synthe-
size the lost speech, interruptions or unnatural sounds are usu-
ally perceivable by the user. When measuring the quality of
a voice network, there are excellent tools available, which can
predict the perceived speech quality. However, they offer only
little insight into the technical cause of a quality degradation.
A packet-loss detection model could explain the influence of
transmission errors on the speech quality and state a packet-
loss rate. Thus, making it easier to identify technical problems
in the network. In this paper, we examine a new approach for
detecting (perceived) packet-loss of transmitted speech by au-
dio analysis. After finding a lost packet, the model classifies in
a second stage if the loss was perceivable as a quality degra-
dation. In the model, we use meaningful features that are easy
to interpret, and obtained promising results in a simulated envi-
ronment. Therefore, this detector could also be used to evaluate
new packet-loss concealment algorithms and help in optimizing
the same.
Index Terms: speech quality, packet-loss concealment, plc

1. Introduction
The quality of transmitted speech is usually measured by audi-
tory tests in which test participants rate speech files on a five-
point absolute-category scale [1]. The average over all partici-
pants then gives the mean opinion score (MOS) of a condition.
Because these auditory tests are costly and time consuming, it
is usually preferred to use instrumental quality models. The
current recommendation for instrumental quality prediction of
super-wideband (SWB) speech by the International Telecom-
munication Union (ITU-T) is ITU-T Rec P.863 or P.OLQA [2].
It estimates the MOS of a speech signal based on a compari-
son of the original signal and the degraded signal. However,
the MOS only gives a statement about the overall speech qual-
ity, without any insights into the problem that caused the qual-
ity impairment. In [3] three orthogonal speech quality dimen-
sions were identified: Noisiness, Coloration, and Discontinu-
ity; to which later Loudness was added as a fourth dimension
[4]. An instrumental prediction model for these dimensions
was presented in [4] and is also currently under study at the
ITU-T SG12 in the work item P.AMD [5]. These quality di-
mensions provide more diagnostic information about the speech
impairment, but still there is no direct link to a technical cause
of the transmission system, since these quality dimension are
purely perceptual based. Therefore, the ITU-T SG12 work item
P.TCA [6] aims at identifying problems in a communication

network through diagnostics and cause analysis of speech sig-
nals. Since frame/packet loss or concealment is one of the main
impairments in modern voice networks, it is necessary for such
a problem identification model to detect these losses through
audio analysis. Concealment algorithms of modern codecs try
to synthesize a lost packet by repeating information from the
previously received frames [7]. When the algorithm fails to syn-
thesize a signal similar to the missed frame, it often results in
robotic voice or artificial and annoying sounds. In end-to-end
measurements of voice transmission systems not all network pa-
rameters, such as packet-loss rate, are usually available. For this
application, a signal based packet-loss detection model could
estimate a packet-loss rate and explain the influence of trans-
mission errors on the speech quality. Furthermore, it could be
used to train single-ended speech quality models, which are not
able to predict packet-loss reliably at the moment [8].

In this paper, we study a novel approach for detecting (per-
ceived) packet-loss concealment by using meaningful features,
such as formant information and fundamental frequency dis-
tances. We then train a first decision tree classifier that detects
frames which are affected by packet-loss, in a second stage an-
other tree classifier is trained to find only frames in which the
packet-loss was auditory perceivable. As a results we can cal-
culate an estimate of a perceived packet-loss rate and addition-
ally a rate of frames with packet-loss that were notable in the
speech signal, but not perceivable. This detection model could
then also be used to evaluate or optimize new concealment al-
gorithms. In the experiments, we focused on the SWB codec
EVS [9] because it uses state of the art concealment algorithms.
However, as we also want to study if our approach works codec
independently, we included AMR-WB [10] conditions in the
test database as well. In the following we will first introduce the
features that are used in the detection model, then we describe
the decision tree classifier and the databases that we generated.
After that, we present the results and finally conclude the paper.

2. Features
The goal of this detection model is to use meaningful features
that can easily be interpreted. Using features that are directly
linked to properties caused by packet-loss, should make the de-
tector more robust to other distortions, such as noise and loud-
ness variation. Therefore, we want to avoid using features such
as MFCCs or simple distance measurements between the orig-
inal and the degraded power spectral densities. Most of the
packet-loss concealment methods used by CELP codecs are
based on extrapolating LP-parameters from previously received
frames to conceal the missing frame. If multiple consecutive
frames are lost, the gain of the concealed frames is attenuated
towards comfort noise level.

Thus, one main indicator of a concealed missed packet is a
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Figure 1: Autocorrelograms with extracted fundamental fre-
quency (in lags) marked as red line. TOP: Original autocor-
relogram Rxx. BOTTOM: Degraded autocorrelogram Ryy .

constant fundamental frequency in the degraded signal y, while
the fundamental frequency in the original signal x is changing.
This effect is shown in Figure 1, where at around 1.7 seconds
it can be seen how the fundamental frequency (red line) stays
constant in the bottom graph of the degraded signal (measured
in lags), whereas the lag of the fundamental frequency increases
towards the end of the vowel in the original signal in the top
graph. As a consequence, we used the distance in fundamental
frequency as a first input feature of the detection model. Al-
though generally a change in the pitch of a speech signal is
not necessarily linked to a perceived quality degradation, it al-
most always seems to be the case for transmitted speech through
voice networks, as the pitch change is accompanied by other
distortions in the frequency domain.

In some cases the fundamental frequency may stay constant
in the degraded signal, but equally so in the original signal.
However, the perceived quality of a speech signal will still be
clearly compromised by artifacts if the formants of the original
signal are severely altered. Figure 2 presents the spectral en-
velope of four consecutive speech frames. In the first frame,
shown in the top left graph, the degraded spectral envelope
(dashed, red line) is aligned with the envelope of the original
signal (solid, blue line). As the frames progress, the degraded
envelope differs more and more from the original envelope, with
two distinctive, artificial formants standing out in the last frame,
shown in the bottom right graph. These formants differ in am-
plitude, frequency, and bandwidth from the ones in the original
signal. Therefore, we can conclude that the degraded signal is
impaired by an artifact. The fundamental frequency (around
230 Hz) is approximately the same in both signals, although
the formants of the degraded signal do not align with the orig-
inal signal. Because of this, we also used formant information,
which we extracted from the spectral envelope of the original
and the degraded signal as input features of the model. Addi-
tionally, the power of each frame was calculated as RMS (root
mean square) and used as feature. All features were calculated
for frames with a length of tframe = 60ms and an overlap of
70%, yielding a frame every 18ms. Thus, we avoid being in
sync with the original 20ms frames used by the codec, since in
practice this information wouldn’t be available either.

2.1. Fundamental frequency

To capture the effect of a constant fundamental frequency,
caused by repeating vocal tract information from the last cor-
rectly received frame, we firstly downsampled the speech sig-
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Figure 2: Spectral envelope of four consecutive speech frames.
SOLID, BLUE: Original signal. DASHED, RED: Degraded
signal

nals to fs = 16 kHz and then applied a low-pass filter with
cut-off frequency fc = 1500Hz. The autocorrelation func-
tion ryy(k) is computed by using the FFT/IFFT method and all
values are normalized to the autocorrelation value at zero lag
ryy(k) = ryy(k)/ryy(0), where k is the lag in samples. Then,
all values before the first zero crossing are set to zero and the
autocorrelations of all frames are combined to a matrix Ryy ,
where l ∈ {1, ..., Nl} is the frame index. The resulting matrix
can also be called autocorrelogram and is shown in Figure 1.

To extract the f0,y ridge, firstly we find the location of the
maximum value in the autocorrelogram of the degraded speech
file f0,y(l). Then we search left of the maximum to find the
maximum value in the neighbouring 11 lag binsRyy(ks,y, l−1)
with ks,y ∈ {f0,y(l)−5, ..., f0,y(l)+5}. This is repeated until
the maximum in the neighbouring bins is below a threshold of
λ0,y = 0.6. After that, we repeat the same procedure on the
right side of the initially found maximum. As a next step, we
search for the corresponding f0,x ridge in the original speech
file. To this end, the maximum in the reference autocorrelo-
gram is found, only considering the frames in which we found
the f0,y ridge in the degraded file. Again, we search to the left
of the maximum and then to the right with a lower threshold of
λ0,x = 0.4. However, to avoid obtaining divergent fundamental
frequencies in the speech signals, only due to minor periodicity
differences in the autocorrelation functions, a weighting func-
tion is applied that favours values along the degraded ridge f0,y .
This can be written as

f0,x(l) = argmax
ks,x

(
Rxx(ks,x, l)− α|(ks,x − f0,y(l)|

)
, (1)

where α = 0.035 describes how strong the influence of the
weighting is. When both ridges are found, all values in the
frames where the ridges were found are set to zero, and the next
ridge is extracted by finding the maximum value in Ryy . This is
repeated until no values greater than λ0,x = 0.7 are left in Ryy .
From both f0 ridges we calculate a fundamental frequency dis-
tance, measured in sample lags, as follows:

f0,d(l) = f0,y(l)− f0,x(l). (2)

As a further feature we extract the difference along the ridge
f0,y(l) of both autocorrelograms as follows:

pd,y(l) = Ryy (f0,y(l), l)−Rxx (f0,y(l), l) . (3)
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This feature tells us how large the difference in periodicity of
both signals is. If there is a strong periodicity in the degraded
signal, which is missing in the original signal, we can assume
that an artificial, periodic sound has been added to the degraded
signal by the concealment algorithm. On the contrary, if a peri-
odic sound is missing in the degraded file, we can assume that
parts of a vowel are missing in the speech signal. Therefore, we
calculate the difference along the ridge of the reference signal
f0,x(l) as well:

pd,x(l) = Rxx (f0,x(l), l)−Ryy (f0,x(l), l) . (4)

In case there was no ridge found in a frame l, the distances are
set to zero f0,d(l) = pd,y(l) = pd,x(l) = 0. As a result, we
receive one value for each feature every 18ms.

2.2. Formants

To extract the formant features, the signals are firstly resam-
pled to fs = 14 kHz. After that, the coefficients of a 14th
order, forward linear prediction are calculated for each speech
frame. The frequency response of the coefficients then gives
the spectral envelope of the original signal Sx(l) and the de-
graded signal Sy(l), where l is the frame index. The resulting
envelopes are used to find the formants by peak extraction. For
each peak in the envelope, the amplitude famp(b, l), frequency
ffrq(b, l), prominence fprm(b, l), and the width fwid(b, l) are
computed [11]. The first four peaks with a prominence higher
than λprom = 0.5 are then kept, with b ∈ {1, 2, 3, 4}. From
these formants the distance between the original and degraded
signal in amplitude, frequency, prominence and width is calcu-
lated for each formant found in the original envelope and also
for each formant found in the degraded envelope. The corre-
sponding formant that is used for comparison is obtained by
finding the formant with the closest frequency to the frequency
of the considered formant, as follows:

b1,cmp,x = argmin
b

(
ffrq,x(1, l)− ffrq,y(b, l)

)
, (5)

where ffrq,x(1, l) is the considered formant from the original
signal, for which a distance is measured. The index of the
comparison formant bcmp is then also calculated for the other 3
peaks b = {2, 3, 4} and for the degraded signal. Subsequently,
the distances are calculated as follows:

famp,xy(1, l) = famp,x(1, l)− famp,y((b1,cmp,x), l) (6)

Again this is calculated vice versa for the degraded formants
and also for the frequency, prominence, and width. These
distances are then used together with the formant frequency,
prominence, and width as feature inputs, yielding in total 14
formant feature vectors with four entries each.

3. Decision Trees
The extracted features from the autocorrelogram and the spec-
tral envelope are then used to train a binary classifier that dis-
tinguishes between unimpaired frames and frames that contain
packet-loss. The features that we calculated are often linked to
each other and only give a meaningful statement when consid-
ered together. For example, a frame is likely to contain packet-
loss if the fundamental frequency differs by 100 Hz, but only
if the amplitude of the first formant differs by at least 20 dB as
well. These kind of features are suitable to be trained with a
binary decision tree [12]. Additionally, decision trees allow for
an easy interpretation and hence help to find possible improve-
ments of a model.

3.1. Packet loss detection

In a first step, we train a decision tree to find frames that con-
tain packet-loss. To this end, we used the packet-loss patterns
that we generated to simulate packet-loss as response variable.
With these patterns we know exactly in which frames the de-
coder had no speech data available and consequently applied a
concealment algorithm.

3.2. Perceived packet loss detection

After the frames with the assumed packet-loss were found, we
applied a second decision tree that classifies whether the found
packet-loss was perceivable as a quality degradation or not. To
do this, we used annotations from an expert listening experi-
ment and applied them as response variable in the decision tree
learning process. The motivation behind this, is on one hand to
also find frames affecty by packet-loss that can be detected in
the signal, but in fact don’t make an impact as a quality impair-
ment. On the other hand, we anticipate a more accurate clas-
sification when the decision tree can concentrate on potential
packet-loss candidates only. In the training phase of this second
stage, we applied light additive white noise before calculating
the input features. Thus, rendering the model more robust to-
wards noisy conditions.

4. Databases
We used two databases for training, and one database for test-
ing. The degraded speech signals were generated by randomly
selecting a bitrate mode of the respective codec (either EVS or
AMR-WB). DTX was set off for all conditions. Then, exactly
one burst of lost packets, at a random location, was applied to
the speech file with the ITU-T EID (error insertion device) tool
[13]. The length of each burst was a random number of con-
secutive lost frames between 1-6. Both codecs use a standard
frame length of 20 ms, resulting in lost speech length from 20
ms to 120 ms. Where we assume that lost speech of a duration
of 20 ms is not necessarily perceivable as a degradation, but 120
ms of lost speech is almost certainly perceivable as a quality im-
pairment, when the erased packets were located within an active
speech segment of the file.

The files were then annotated in an expert listening test on
a four point category-ratio scale [14], which is presented in Fig-
ure 3. The test participants were experts who are dealing with
speech processing as part of their work. During the test it was
possible for the experts to listen to a condition as often as they
needed to make a confident decision. In these experiments we
are not interested in a subjective opinion of the participant, but
rather want to find out if the packet-loss is perceivable at all.

Figure 3: Four point CR scale of expert listening test.

A - Training: The first database was generated from four
German and four English sentences taken from Annex C of
ITU-T Rec. P.501. These speech files are specifically prepared
for use with speech quality prediction models [15]. Based on
those files, we generated 500 degraded speech files that were
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coded with EVS and contain one packet-loss burst each. The
files were then annotated by one expert in an auditory experi-
ment.

B - Training: This databases doesn’t contain any packet-
loss, its purpose is merely to make the detection model more
robust towards different speaker characteristics and low bitrate
coding, which can be confused with packet-loss concealment.
We used 100 German semi-spontaneous dialogues from the
NCS corpus [16] that we coded with random bitrate modes.

C - Test: This database was generated from 100 English
double sentences that were used during the ITU-T P.863 [2] se-
lection phase. From these files the individual sentences were
extracted, omitting the speech pause before and after, thus re-
sulting in 200 speech files. Three expert listeners annotated
this database in an auditory test, one of which also annotated
database A. An overview of the databases can be seen in Table

Table 1: Overview of databases.

# EVS / AMR-WB PL Dur. Tot. dur. S. L. M / W fs
A 500 500 / 0 y 8 s 66 min 4 1 50 % 48 kHz
B 100 50 / 50 n 30-90 s 71 min 100 0 50 % 48 kHz
C 200 100 / 100 y 2-3 s 8 min 4 3 50 % 48 kHz

1, where ”L.” is the number of listeners and ”S.” is the numbers
of speakers. Note that for the AMR-WB conditions we firstly
downsampled the speech files to 16 kHz and then upsampled
the files to 48 kHz again after decoding.

5. Results and discussion
The features were calculated as described in the sections before
and used to train the decision trees. Only lost packets that were
at least ”clearly” perceived were used in the training phase of
the second decision tree. In the training phase of the first de-
cision tree, the generated error patterns were used as response
variable. Then we applied the models to the test database C. We
evaluated the EVS and AMR-WB conditions of database C sep-
arately, since no AMR-WB transmission errors were used in the
training phase. The training database B was omitted in the eval-
uation because it doesn’t contain any transmission errors and
was only used to increase the robustness of the model.

To evaluate the detection model we concentrated on four
evaluation metrics. Firstly, we calculated the number of cor-
rectly found lost packets that were at least ”clearly” perceived
by the experts. These would be all lost packets with a mean
rating of 1.5 or higher. Because the packet-loss concealment
algorithm may influence the speech signal even after the loca-
tion of the actually lost packet, we used a tolerance of 200 ms
for the evaluation. If at least one of the frames within the toler-
ance was detected as packet loss, it was counted as detected and
true positive (this means the maximum number of true positives
per condition is one). If a frame was detected as packet-loss
outside the tolerance it was counted as false positive detection.
The TPR-CP (true positive rate - clearly perceived) is then the
number of clearly perceived true positives, divided by the total
number of conditions with clearly perceived packets. The FPR
(false positive rate) is the number of frames, falsely detected as
packet-loss, divided by the number of conditions. Note that we
did not divide by the number of unimpaired frames since almost
all frames are unimpaired and only few contain packet-loss con-
cealment. The TPR-SP (true positive rate - slightly perceived)
is the number of slightly perceived true positives, divided by
the total number of conditions with slightly perceived packets.
The FPR-NP (false positive rate - not perceived) is the num-

ber of detected packet loss conditions that were not perceived,
divided by the total number of conditions with not perceived
packet-loss.

Table 2 presents the results after the first decision tree clas-
sifier. Most of the ”clearly” perceived lost packets were found
with a true positive rate of higher than 0.93. In the test database
A there were zero falsely detected lost packets. In the test
database C with EVS conditions, the false positive rate was rela-
tively high with 0.05. The ”slightly” perceived lost packets were
detected with a ratio between 0.63 and 0.8. Furthermore, 22%
- 43% of the lost packets that were not perceived were detected
by the first tree. The second decision tree used the annotations

Table 2: Results after first packet-loss decision tree.

TPR-CP FPR TPR-SP FPR-NP
A - EVS (Train) 0.93 0.00 0.63 0.22
C - EVS (Test) 0.96 0.05 0.66 0.33
C - AMRWB (Test) 0.96 0.02 0.80 0.43

Table 3: Results after second perceived packet-loss tree.

TPR-CP FPR TPR-SP FPR-NP
A - EVS (Train) 0.91 0.00 0.43 0.11
C - EVS (Test) 0.96 0.00 0.62 0.22
C - AMRWB (Test) 0.89 0.02 0.80 0.20

from the expert listening experiment in the training phase and
detects whether a lost packet was perceivable or not. The results
after this second tree are shown in Table 3. The detection rate
of the lost packets that were not perceived is now dropped by
approximately 45%, whereas the TPR-CP rate of ”clearly” per-
ceived detected lost packets did not change significantly. Only
the detection rate of the AMR-WB conditions of database C de-
creased. However, in the training phase of both trees no AMR-
WB packet-loss conditions were included. Considering this,
the performance on the AMR-WB conditions is still decent and
proves that our approach is mostly independent of the applied
codec. The FPR of the EVS conditions in database C is now
zero, this means that the detector did not falsely find any packet-
loss in unimpaired speech frames of EVS conditions. We can
conclude from the good results after the first decision tree that
auditory experiments are not necessarily needed to train the de-
tector. This shows that it is possible to train the model with
large amounts of data, generated with random error patterns.

6. Conclusions
In this paper, we showed that the approach of using formant
information and fundamental frequency works well for the pur-
pose of finding packet-loss, with consistent detection rates of
0.89-0.96 and almost no false positive detection. The results are
a great step forward for the work item P.TCA. Furthermore, it
was found that the approach works independently of the applied
codec and no auditory annotations are necessary to train a first
classifier. Thus, in future work we plan to use larger databases
for training, and to extend this model to more realistic scenarios,
including live recordings with other distortions and jitter buffer.
This will make a more advanced preprocessing and time align-
ment necessary. Also, a more robust calculation of the formants
could improve the detection accuracy. Why certain packet-loss
frames that are not perceived are detected in the signal and oth-
ers are not detected needs to be investigated in further studies.
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