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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,

Mapping

Linguistic meaning:
@{i1:object}(box)

Conceptual meaning:
concept(box) & instance(I1,box) & i1⇄ I1
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Abstract: The paper presents an HRI architecture for human‑augmented mapping, which has been implemented 

and tested on an autonomous mobile robotic platform. Through interaction with a human, the robot can augment 

its autonomously acquired metric map with  qualitative  information about  locations and  objects  in  the environ‑

ment. The system implements various interaction strategies observed in  independently performed Wizard‑of‑Oz 

studies. The paper discusses  an  ontology‑based  approach to multi‑layered  conceptual spatial mapping that pro‑

vides a common ground for human‑robot dialogue. This is achieved by combining acquired knowledge with innate 

conceptual commonsense  knowledge  in order  to  infer new  knowledge. The  architecture bridges  the gap between 

the rich semantic representations of  the meaning expressed by verbal utterances on the one hand and the robot’s 

internal sensor‑based world representation on the other. It is thus possible to establish reference to spatial areas in 

a situated dialogue between a human and a robot about their environment. The resulting conceptual descriptions 

represent qualitative knowledge about locations in  the environment that can serve as a basis  for achieving a no‑

tion of situational awareness. 

 

Keywords: Human‑Robot Interaction, Conceptual Spatial Mapping, Situated Dialogue 

 

1. Introduction 

 

More and more robots  find their way into environments 

where  their primary purpose  is  to  interact with humans 

to help and solve a variety of service‑oriented tasks. Par‑

ticularly if such a service robot is mobile, it needs to have 

an understanding of the spatial and functional properties 

of the environment in which it operates. The problem we 

address  is how a  robot  can acquire  an understanding of 

the environment so that it can autonomously operate in it, 

and communicate about  it with a human. We present an 

architecture  that  provides  the  robot  with  this  ability 

through  a  combination  of  human‑robot  interaction  and 

autonomous  mapping  techniques.  It  captures  various 

functions  that  independently  performed  Wizard‑of‑Oz 

studies have observed to be necessary for such a system. 

Several  case  studies  have  been  conducted  to  test  and 

evaluate the resulting integrated system. 

The main  issue  is how to establish a  correspondence be‑

tween how a human perceives spatial and functional as‑

pects  of  an  environment,  and  what  the  robot  autono‑

mously  learns as a map. Most existing approaches to ro‑

bot  map  building,  or  Simultaneous  Localization  And 

Mapping  (SLAM),  use  a metric  representation  of  space. 

Humans,  though,  have  a  more  qualitative,  topological 

perspective  on  spatial  organization  (McNamara,  1986). 

We adopt an approach in which we build a multi‑layered 

representation  of  the  environment,  combining  metric 

maps  and  topological  graphs  (as  an  abstraction  over 

geometrical information), like (Kuipers, 2000). We extend 

these  representations  with  conceptual  descriptions  that 

capture  aspects  of  spatial  and  functional  organization. 

The robot obtains these descriptions either through inter‑

action with a human, or  through inference combining its 

own observations  (I  see  a  coffee machine) with ontological 

knowledge (Coffee machines are usually found in kitchens, so 

this is likely to be a kitchen!). We store objects in the spatial 

representations,  and  so  associate  the  functionality  of  a 

location with  that  of  the  functions of  the  objects  present 

there.  A  core  characteristic  of  our  approach  is  that  we 

analyze  each  utterance  to  obtain  a  representation  of  the 

meaning  it  expresses,  and how  it  (syntactically)  conveys 

that  meaning  –  rather  than  just  doing  for  example  key‑

word  spotting.  This  way,  we  can  properly  handle  the 

variety of ways  in which people may express assertions, 

questions,  and  commands. Furthermore, having a  repre‑

sentation of the meaning of the utterance we can combine 

it  with  further  inferences  over  ontologies  to  obtain  a 

complete  conceptual description of  the  location or object 

being  talked  about.  This  way  we  can  ground  situated 

dialogue in the situational awareness of the robot. 

Following  (Topp  &  Christensen,  2005)  and  (Topp  et  al., 

2006), we  talk  about Human‑Augmented Mapping  (HAM) 

to  indicate  the  active  role  that  human‑robot  interaction 

plays  in  the  robotʹs  acquisition  of  qualitative  spatial 

knowledge.  In  §2  we  discuss  various  observations  that 

independently  performed  Wizard‑of‑Oz  studies  have 

made on typical  interactions for HAM scenarios, and we 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with stereo-vision
camera

SICK laser range finder

Balance caster wheel

Drive wheels (left/right)
with pneumatic tires 
and wheel encoders for 
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 that  independently  performed  Wizard‑of‑Oz 

studies have observed to be necessary for such a system. 

Several  case  studies  have  been  conducted  to  test  and 

evaluate the resulting integrated system. 

The main  issue  is how to establish a  correspondence be‑

tween how a human perceives spatial and functional as‑

pects  of  an  environment,  and  what  the  robot  autono‑

mously  learns as a map. Most existing approaches to ro‑

bot  map  building,  or  Simultaneous  Localization  And 

Mapping  (SLAM),  use  a metric  representation  of  space. 

Humans,  though,  have  a  more  qualitative,  topological 

perspective  on  spatial  organization  (McNamara,  1986). 

We adopt an approach in which we build a multi‑layered 

representation  of  the  environment,  combining  metric 

maps  and  topological  graphs  (as  an  abstraction  over 

geometrical information), like (Kuipers, 2000). We extend 

these  representations  with  conceptual  descriptions  that 

capture  aspects  of  spatial  and  functional  organization. 

The robot obtains these descriptions either through inter‑

action with a human, or  through inference combining its 

own observations  (I  see  a  coffee machine) with ontological 

knowledge (Coffee machines are usually found in kitchens, so 

this is likely to be a kitchen!). We store objects in the spatial 

representations,  and  so  associate  the  functionality  of  a 

location with  that  of  the  functions of  the  objects  present 

there.  A  core  characteristic  of  our  approach  is  that  we 

analyze  each  utterance  to  obtain  a  representation  of  the 

meaning  it  expresses,  and how  it  (syntactically)  conveys 

that  meaning  –  rather  than  just  doing  for  example  key‑

word  spotting.  This  way,  we  can  properly  handle  the 

variety of ways  in which people may express assertions, 

questions,  and  commands. Furthermore, having a  repre‑

sentation of the meaning of the utterance we can combine 

it  with  further  inferences  over  ontologies  to  obtain  a 

complete  conceptual description of  the  location or object 

being  talked  about.  This  way  we  can  ground  situated 

dialogue in the situational awareness of the robot. 

Following  (Topp  &  Christensen,  2005)  and  (Topp  et  al., 

2006), we  talk  about Human‑Augmented Mapping  (HAM) 

to  indicate  the  active  role  that  human‑robot  interaction 

plays  in  the  robotʹs  acquisition  of  qualitative  spatial 

knowledge.  In  §2  we  discuss  various  observations  that 

independently  performed  Wizard‑of‑Oz  studies  have 

made on typical  interactions for HAM scenarios, and we 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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8

Mapping

Linguistic meaning:
@{i1:object}(box)

Conceptual meaning:
concept(box) & instance(I1,box) & i1⇄ I1
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8

Mapping

Linguistic meaning:
@{i1:object}(box)

Conceptual meaning:
concept(box) & instance(I1,box) & i1⇄ I1
Conceptual meaning:

concept(box) & ...
Modal meaning:
c1(box) & f1(...) .. 
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8

Mapping

Linguistic meaning:
@{i1:object}(box)

Conceptual meaning:
concept(box) & instance(I1,box) & i1⇄ I1
Conceptual meaning:

concept(box) & ...
Modal meaning:
c1(box) & f1(...) .. 
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A system for interactive learning in dialogue with a tutor

Danijel Skočaj, Matej Kristan, Alen Vrečko, Marko Mahnič, Miroslav Janı́ček, Geert-Jan M. Kruijff,
Marc Hanheide, Nick Hawes, Thomas Keller, Michael Zillich and Kai Zhou

Abstract— In this paper we present representations and

mechanisms that facilitate continuous learning of visual con-

cepts in dialogue with a tutor and show the implemented robot

system. We present how beliefs about the world are created

by processing visual and linguistic information and show how

they are used for planning system behaviour with the aim at

satisfying its internal drive – to extend its knowledge. The

system facilitates different kinds of learning initiated by the

human tutor or by the system itself. We demonstrate these

principles in the case of learning about object colours and basic

shapes.

I. INTRODUCTION

Cognitive systems are often characterised by their ability
to learn, communicate and act autonomously. By combining
these competencies, the system can incrementally learn by
engaging in mixed initiative dialogues with a human tutor.
In this paper we focus on representations and mechanisms
that enable such interactive learning and present a system
designed to acquire visual concepts through interaction with
a human.

Such continuous and interactive learning is important
from several perspectives. A system operating in a real life
environment is continuously exposed to new observations
(scenes, objects, actions etc.) that cannot be envisioned in
advance. Therefore, it has to be able to update its knowledge
continuously based on the newly obtained visual information
and information provided by a human teacher. Assuming
that the information provided by the human is correct, such
interactive learning can significantly facilitate, and increase
the robustness of, the learning process, which is prone to
errors due to unreliable robot perception capabilities. By
assessing the system’s knowledge, the human can adapt
their way of teaching and drive the learning process more
efficiently. Similarly, the robot can take the initiative, and
ask the human for the information that would increase its
knowledge most, which should in turn lead to more efficient
learning.

In this paper we describe how our robot George, depicted
in Fig. 1, learns and refines visual conceptual models of
colours and two basic shapes, either by attending to infor-
mation deliberately provided by a human tutor (tutor-driven
learning: e.g., H: ‘This is a red box.’) or by taking initiative

The work was supported by the EC FP7 IST project CogX-215181.
D. Skočaj, M. Kristan, A. Vrečko, and M. Mahnič are with University

of Ljubljana, Slovenia
M. Janı́ček and G.J. M. Kruijff are with DFKI, Saarbrücken, Germany
M. Hanheide and N. Hawes are with University of Birmingham, UK
T. Keller is with Albert-Ludwigs-Universität Freiburg, Germany
M. Zillich and K. Zhou are with Vienna University of Technology, Austria

Fig. 1. Scenario setup.

itself, asking the tutor for specific information about an
object in the scene (situated tutor-assisted learning: e.g., G:
‘Is the elongated object yellow?’), or even asking questions
that are not related to the current scene (non-situated tutor-
assisted learning: e.g., G: ‘Can you show me something
red?’)1. Our approach unifies these cases into an integrated
approach including incremental visual learning, selection of
learning goals, continual planning to select actions for op-
timal learning behaviour, and a dialogue subsystem. George
is one system in a family of integrated systems that aim to
understand where their own knowledge is incomplete and
that take actions to extend their knowledge subsequently.
Our objective is to demonstrate that a cognitive system
can efficiently acquire conceptual models in an interactive
learning process that is not overly taxing with respect to tutor
supervision and is performed in an intuitive, user-friendly
way.

Interactive continuous learning using information obtained
from vision and language is a desirable property of any
cognitive system, therefore several systems have been de-
veloped that address this issue (e.g., [1], [2], [3], [4], [5],
[6], [7]). Different systems focus on different aspects of this
problem, such as the system architecture and integration [3],
[4], [6], learning [1], [2], [6], [7], or social interaction [5].
Our work focuses on the integration of visual perception
and processing of linguistic information by forming beliefs
about the state of the world; these beliefs are then used in
the learning process for updating the current representations.
The system behaviour is driven by a motivation framework
which facilitates different kinds of learning in a dialogue
with a human teacher, including self-motivated learning,
triggered by autonomous knowledge gap detection. Also,

1The robot can be seen in action in the video accessible at
http://cogx.eu/results/george.
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Abstract
The paper presents a new model for context-
dependent interpretation of linguistic expressions
about spatial proximity between objects in a nat-
ural scene. The paper discusses novel psycholin-
guistic experimental data that tests and verifies the
model. The model has been implemented, and en-
ables a conversational robot to identify objects in a
scene through topological spatial relations (e.g. “X
near Y”). The model can help motivate the choice
between topological and projective prepositions.

1 Introduction
Our long-term goal is to develop conversational
robots with which we can have natural, fluent sit-
uated dialog. An inherent aspect of such situated
dialog is reference to aspects of the physical envi-
ronment in which the agents are situated. In this
paper, we present a computational model which
provides a context-dependent analysis of the envi-
ronment in terms of spatial proximity. We show
how we can use this model to ground spatial lan-
guage that uses topological prepositions (“the ball
near the box”) to identify objects in a scene.
Proximity is ubiquitous in situated dialog, but

there are deeper “cognitive” reasons for why we
need a context-dependent model of proximity to
facilitate fluent dialog with a conversational robot.
This has to do with the cognitive load that process-
ing proximity expressions imposes. Consider the
examples in (1). Psycholinguistic data indicates
that a spatial proximity expression (1b) presents a
heavier cognitive load than a referring expression
identifying an object purely on physical features
(1a) yet is easier to process than a projective ex-
pression (1c) (van der Sluis and Krahmer, 2004).

⇤The research reported here was supported by the CoSy
project, EU FP6 IST ”Cognitive Systems” FP6-004250-IP.

(1) a. the blue ball
b. the ball near the box
c. the ball to the right of the box

One explanation for this preference is that
feature-based descriptions are easier to resolve
perceptually, with a further distinction among fea-
tures as given in Figure 1, cf. (Dale and Reiter,
1995). On the other hand, the interpretation and
realization of spatial expressions requires effort
and attention (Logan, 1994; Logan, 1995).

Figure 1: Cognitive load

Similarly we
can distinguish be-
tween the cognitive
loads of processing
different forms of
spatial relations.
Focusing on static
prepositions, topo-
logical prepositions
have a lower cognitive load than projective
prepositions. Topological prepositions (e.g.
“at”, “near”) describe proximity to an object.
Projective prepositions (e.g. “above”) describe a
region in a particular direction from the object.
Projective prepositions impose a higher cognitive
load because we need to consider different spatial
frames of reference (Krahmer and Theune, 1999;
Moratz and Tenbrink, 2006). Now, if we want
a robot to interact with other agents in a way
that obeys the Principle of Minimal Cooperative
Effort (Clark and Wilkes-Gibbs, 1986), it should
adopt the simplest means to (spatially) refer to an
object. However, research on spatial language in
human-robot interaction has primarily focused on
the use of projective prepositions.
We currently lack a comprehensive model for

topological prepositions. Without such a model,
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Mediation

Ontology-based mediation

Objects, features, uncertainty 

Reasoning with 
incompleteness

Structural uncertainty

Clarification 

Information Fusion For Visual Reference Resolution In
Dynamic Situated Dialogue
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,

Crossmodal Content Binding in Information-Processing

Architectures

⇤
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,

⇤This work was supported by the EU FP6 IST Cognitive
Systems Integrated Project “CoSy” FP6-004250-IP.
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8
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A Systems and Representational Approach
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Abstract—There are many different approaches to building
a system that can engage in autonomous mental development.
In this paper we present an approach based on what we term
self-understanding, by which we mean the explicit representation
of and reasoning about what a system does and doesn’t know,
and how that knowledge changes under action. We present an
architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental
development, which we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a goal management and planning system for
setting and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly au-
tonomous fashion? Autonomous learning requires that

the agent pick its own learning goals. One way to achieve
this is to give that agent representations of what it knows and
doesn’t know, and to make it reason with these representations
to set its own epistemic goals. An epistemic goal is a goal
to be in a certain knowledge state. This paper describes this
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any time, i.e. representations of their epistemic state.
We also describe representations of how this epistemic state
will change under action. Such representations, together with
algorithms for reasoning about them confer a degree of self-
understanding, and allow the agent to plan how to extend its
abilities, or knowledge of the environment, i.e. self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals.
This mechanism is necessary to allow our approach to scale,
since if a robot generates many possible learning goals the
time taken to plan for them all will be too great.
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We first define self-understanding and self-extension as we
see them. To do this it is necessary to characterise the different
types of incompleteness in knowledge that will be represented.
We use incompleteness as an umbrella term to cover many
different types of knowledge gaps and uncertainty about
knowledge. We can construct a typology of incompleteness in
knowledge based on three dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that
is incomplete, and whether the incompleteness is represented
in a quantitative or qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that are
part of a model of the world and which have a defined set
of possible values or hypotheses from which the true value is
known to be drawn. We refer to this as simple uncertainty.
We can also have uncertainty about the number of variables
needed in a model, i.e. about the model complexity. Finally
we can also have cases where the agent knows that a variable
is of an unexperienced class, i.e. there is novelty. This can
include cases where the variables are continuous but where
the observation models for a class are quite confident and
do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Five
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, procedural
knowledge about how to act in certain situations to achieve
certain goals, knowledge consisting of predictions of action
outcomes or events, and knowledge about their causes. Finally
there is a question about whether the representation is quali-
tative or quantitative. In qualitative representations we simply
have a set of possible values for the variable, or a statement
that the variable value is unknown, or knowledge that there
may be many variables that are unmodelled. In quantitative
representations we will have some kind of scalar values
attached to hypotheses (such as whether there is novelty or
not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not
mean that the underlying space for the variable is continuous
or discrete, but instead that the way the incompleteness is
represented involves an expression of a degree of preference
for one hypothesis or statement versus another.

Given this brief characterisation of different types of incom-
pleteness we can define self-understanding and self-extension
compactly as follows. A system with self-understanding is
any system with explicit representations that captures some
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8

Conceptual meaning:
concept(box) & ...

Modal meaning:
c1(box) & f1(...) .. 

Mapping
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Abstract—There are many different approaches to building
a system that can engage in autonomous mental development.
In this paper we present an approach based on what we term
self-understanding, by which we mean the explicit representation
of and reasoning about what a system does and doesn’t know,
and how that knowledge changes under action. We present an
architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental
development, which we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a goal management and planning system for
setting and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly au-
tonomous fashion? Autonomous learning requires that

the agent pick its own learning goals. One way to achieve
this is to give that agent representations of what it knows and
doesn’t know, and to make it reason with these representations
to set its own epistemic goals. An epistemic goal is a goal
to be in a certain knowledge state. This paper describes this
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any time, i.e. representations of their epistemic state.
We also describe representations of how this epistemic state
will change under action. Such representations, together with
algorithms for reasoning about them confer a degree of self-
understanding, and allow the agent to plan how to extend its
abilities, or knowledge of the environment, i.e. self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals.
This mechanism is necessary to allow our approach to scale,
since if a robot generates many possible learning goals the
time taken to plan for them all will be too great.

Jeremy L. Wyatt, Marc Hanheide and Nick Hawes are with the University
of Birmingham, email: {jlw,nah,m.hanheide}@cs.bham.ac.uk

Michael Brenner is with Albert-Ludwigs-Universität, email:
brenner@informatik.uni-freiburg.de

Pierre Lison, Geert-Jan M. Kruijff and Hendrik Zender are with DFKI,
Saarbrücken, Germany, email: {plison,gj,zender}@dfki.de

Patric Jensfelt, Andrzej Pronobis, Kristoffer Sjöö and Alper Aydemir are
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We first define self-understanding and self-extension as we
see them. To do this it is necessary to characterise the different
types of incompleteness in knowledge that will be represented.
We use incompleteness as an umbrella term to cover many
different types of knowledge gaps and uncertainty about
knowledge. We can construct a typology of incompleteness in
knowledge based on three dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that
is incomplete, and whether the incompleteness is represented
in a quantitative or qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that are
part of a model of the world and which have a defined set
of possible values or hypotheses from which the true value is
known to be drawn. We refer to this as simple uncertainty.
We can also have uncertainty about the number of variables
needed in a model, i.e. about the model complexity. Finally
we can also have cases where the agent knows that a variable
is of an unexperienced class, i.e. there is novelty. This can
include cases where the variables are continuous but where
the observation models for a class are quite confident and
do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Five
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, procedural
knowledge about how to act in certain situations to achieve
certain goals, knowledge consisting of predictions of action
outcomes or events, and knowledge about their causes. Finally
there is a question about whether the representation is quali-
tative or quantitative. In qualitative representations we simply
have a set of possible values for the variable, or a statement
that the variable value is unknown, or knowledge that there
may be many variables that are unmodelled. In quantitative
representations we will have some kind of scalar values
attached to hypotheses (such as whether there is novelty or
not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not
mean that the underlying space for the variable is continuous
or discrete, but instead that the way the incompleteness is
represented involves an expression of a degree of preference
for one hypothesis or statement versus another.

Given this brief characterisation of different types of incom-
pleteness we can define self-understanding and self-extension
compactly as follows. A system with self-understanding is
any system with explicit representations that captures some
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8
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Abstract—There are many different approaches to building
a system that can engage in autonomous mental development.
In this paper we present an approach based on what we term
self-understanding, by which we mean the explicit representation
of and reasoning about what a system does and doesn’t know,
and how that knowledge changes under action. We present an
architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental
development, which we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a goal management and planning system for
setting and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly au-
tonomous fashion? Autonomous learning requires that

the agent pick its own learning goals. One way to achieve
this is to give that agent representations of what it knows and
doesn’t know, and to make it reason with these representations
to set its own epistemic goals. An epistemic goal is a goal
to be in a certain knowledge state. This paper describes this
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any time, i.e. representations of their epistemic state.
We also describe representations of how this epistemic state
will change under action. Such representations, together with
algorithms for reasoning about them confer a degree of self-
understanding, and allow the agent to plan how to extend its
abilities, or knowledge of the environment, i.e. self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals.
This mechanism is necessary to allow our approach to scale,
since if a robot generates many possible learning goals the
time taken to plan for them all will be too great.
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We first define self-understanding and self-extension as we
see them. To do this it is necessary to characterise the different
types of incompleteness in knowledge that will be represented.
We use incompleteness as an umbrella term to cover many
different types of knowledge gaps and uncertainty about
knowledge. We can construct a typology of incompleteness in
knowledge based on three dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that
is incomplete, and whether the incompleteness is represented
in a quantitative or qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that are
part of a model of the world and which have a defined set
of possible values or hypotheses from which the true value is
known to be drawn. We refer to this as simple uncertainty.
We can also have uncertainty about the number of variables
needed in a model, i.e. about the model complexity. Finally
we can also have cases where the agent knows that a variable
is of an unexperienced class, i.e. there is novelty. This can
include cases where the variables are continuous but where
the observation models for a class are quite confident and
do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Five
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, procedural
knowledge about how to act in certain situations to achieve
certain goals, knowledge consisting of predictions of action
outcomes or events, and knowledge about their causes. Finally
there is a question about whether the representation is quali-
tative or quantitative. In qualitative representations we simply
have a set of possible values for the variable, or a statement
that the variable value is unknown, or knowledge that there
may be many variables that are unmodelled. In quantitative
representations we will have some kind of scalar values
attached to hypotheses (such as whether there is novelty or
not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not
mean that the underlying space for the variable is continuous
or discrete, but instead that the way the incompleteness is
represented involves an expression of a degree of preference
for one hypothesis or statement versus another.

Given this brief characterisation of different types of incom-
pleteness we can define self-understanding and self-extension
compactly as follows. A system with self-understanding is
any system with explicit representations that captures some
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8
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Abstract—There are many different approaches to building
a system that can engage in autonomous mental development.
In this paper we present an approach based on what we term
self-understanding, by which we mean the explicit representation
of and reasoning about what a system does and doesn’t know,
and how that knowledge changes under action. We present an
architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental
development, which we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a goal management and planning system for
setting and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly au-
tonomous fashion? Autonomous learning requires that

the agent pick its own learning goals. One way to achieve
this is to give that agent representations of what it knows and
doesn’t know, and to make it reason with these representations
to set its own epistemic goals. An epistemic goal is a goal
to be in a certain knowledge state. This paper describes this
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any time, i.e. representations of their epistemic state.
We also describe representations of how this epistemic state
will change under action. Such representations, together with
algorithms for reasoning about them confer a degree of self-
understanding, and allow the agent to plan how to extend its
abilities, or knowledge of the environment, i.e. self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals.
This mechanism is necessary to allow our approach to scale,
since if a robot generates many possible learning goals the
time taken to plan for them all will be too great.
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We first define self-understanding and self-extension as we
see them. To do this it is necessary to characterise the different
types of incompleteness in knowledge that will be represented.
We use incompleteness as an umbrella term to cover many
different types of knowledge gaps and uncertainty about
knowledge. We can construct a typology of incompleteness in
knowledge based on three dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that
is incomplete, and whether the incompleteness is represented
in a quantitative or qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that are
part of a model of the world and which have a defined set
of possible values or hypotheses from which the true value is
known to be drawn. We refer to this as simple uncertainty.
We can also have uncertainty about the number of variables
needed in a model, i.e. about the model complexity. Finally
we can also have cases where the agent knows that a variable
is of an unexperienced class, i.e. there is novelty. This can
include cases where the variables are continuous but where
the observation models for a class are quite confident and
do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Five
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, procedural
knowledge about how to act in certain situations to achieve
certain goals, knowledge consisting of predictions of action
outcomes or events, and knowledge about their causes. Finally
there is a question about whether the representation is quali-
tative or quantitative. In qualitative representations we simply
have a set of possible values for the variable, or a statement
that the variable value is unknown, or knowledge that there
may be many variables that are unmodelled. In quantitative
representations we will have some kind of scalar values
attached to hypotheses (such as whether there is novelty or
not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not
mean that the underlying space for the variable is continuous
or discrete, but instead that the way the incompleteness is
represented involves an expression of a degree of preference
for one hypothesis or statement versus another.

Given this brief characterisation of different types of incom-
pleteness we can define self-understanding and self-extension
compactly as follows. A system with self-understanding is
any system with explicit representations that captures some
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Example: Conceptual mapping

Problem setting

How to act in, and talk about, dynamic 
large-scale environments ~ about which 
a robot only ever has partial knowledge? 

Development

Use of human-like ontology of 
common sense indoor knowledge,

connected to low-level mapping, 

and dialogue meaning, 

to talk, and reason, about structure 
and content of indoor spaces
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Abstract: The paper presents an HRI architecture for human‑augmented mapping, which has been implemented 

and tested on an autonomous mobile robotic platform. Through interaction with a human, the robot can augment 

its autonomously acquired metric map with  qualitative  information about  locations and  objects  in  the environ‑

ment. The system implements various interaction strategies observed in  independently performed Wizard‑of‑Oz 

studies. The paper discusses  an  ontology‑based  approach to multi‑layered  conceptual spatial mapping that pro‑

vides a common ground for human‑robot dialogue. This is achieved by combining acquired knowledge with innate 

conceptual commonsense  knowledge  in order  to  infer new  knowledge. The  architecture bridges  the gap between 

the rich semantic representations of  the meaning expressed by verbal utterances on the one hand and the robot’s 

internal sensor‑based world representation on the other. It is thus possible to establish reference to spatial areas in 

a situated dialogue between a human and a robot about their environment. The resulting conceptual descriptions 

represent qualitative knowledge about locations in  the environment that can serve as a basis  for achieving a no‑

tion of situational awareness. 

 

Keywords: Human‑Robot Interaction, Conceptual Spatial Mapping, Situated Dialogue 

 

1. Introduction 

 

More and more robots  find their way into environments 

where  their primary purpose  is  to  interact with humans 

to help and solve a variety of service‑oriented tasks. Par‑

ticularly if such a service robot is mobile, it needs to have 

an understanding of the spatial and functional properties 

of the environment in which it operates. The problem we 

address  is how a  robot  can acquire  an understanding of 

the environment so that it can autonomously operate in it, 

and communicate about  it with a human. We present an 

architecture  that  provides  the  robot  with  this  ability 

through  a  combination  of  human‑robot  interaction  and 

autonomous  mapping  techniques.  It  captures  various 

functions  that  independently  performed  Wizard‑of‑Oz 

studies have observed to be necessary for such a system. 

Several  case  studies  have  been  conducted  to  test  and 

evaluate the resulting integrated system. 

The main  issue  is how to establish a  correspondence be‑

tween how a human perceives spatial and functional as‑

pects  of  an  environment,  and  what  the  robot  autono‑

mously  learns as a map. Most existing approaches to ro‑

bot  map  building,  or  Simultaneous  Localization  And 

Mapping  (SLAM),  use  a metric  representation  of  space. 

Humans,  though,  have  a  more  qualitative,  topological 

perspective  on  spatial  organization  (McNamara,  1986). 

We adopt an approach in which we build a multi‑layered 

representation  of  the  environment,  combining  metric 

maps  and  topological  graphs  (as  an  abstraction  over 

geometrical information), like (Kuipers, 2000). We extend 

these  representations  with  conceptual  descriptions  that 

capture  aspects  of  spatial  and  functional  organization. 

The robot obtains these descriptions either through inter‑

action with a 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or  through inference combining its 

own observations  (I  see  a  coffee machine) with ontological 

knowledge (Coffee machines are usually found in kitchens, so 

this is likely to be a kitchen!). We store objects in the spatial 

representations,  and  so  associate  the  functionality  of  a 

location with  that  of  the  functions of  the  objects  present 

there.  A  core  characteristic  of  our  approach  is  that  we 

analyze  each  utterance  to  obtain  a  representation  of  the 

meaning  it  expresses,  and how  it  (syntactically)  conveys 

that  meaning  –  rather  than  just  doing  for  example  key‑

word  spotting.  This  way,  we  can  properly  handle  the 

variety of ways  in which people may express assertions, 

questions,  and  commands. Furthermore, having a  repre‑

sentation of the meaning of the utterance we can combine 

it  with  further  inferences  over  ontologies  to  obtain  a 

complete  conceptual description of  the  location or object 

being  talked  about.  This  way  we  can  ground  situated 

dialogue in the situational awareness of the robot. 

Following  (Topp  &  Christensen,  2005)  and  (Topp  et  al., 

2006), we  talk  about Human‑Augmented Mapping  (HAM) 

to  indicate  the  active  role  that  human‑robot  interaction 

plays  in  the  robotʹs  acquisition  of  qualitative  spatial 

knowledge.  In  §2  we  discuss  various  observations  that 

independently  performed  Wizard‑of‑Oz  studies  have 

made on typical  interactions for HAM scenarios, and we 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Referencing

Table 2: Cooccurrence matrix c(o, l) for some select objects and locations.

kitchen bathroom garage o⇤ce
sink 0.394958 0.24747899 0.053361345 0.05630252
faucet 0.45874125 0.40419582 0.018181818 0.043776225
computer 0.048387095 0.028830646 0.019112904 0.111693546

often biased to human interest, and omit the mundane and ordinary – e.g.,
ducks and baths are common, however faucets and baths are rarely mentioned
together. We mitigate those problems by first applying the square root function
to the counts, and then boost counts selectively using B. The resulting prior
then arguably better expresses commonsense knowledge which a contributor to
the OMICS project considered relevant for intelligent indoor robots. Table 2
shows some examples of the obtained cooccurrence priors.

4 Word Sense Disambiguation

The resulting cooccurrence matrix associates object words with location words.
Consequently it su�ers from the vagueness that penetrates natural language. As
mentioned earlier, the same word can have many di�erent meanings, depending
on the context. Although the domain of interest already restricts the context,
most mentioned words can still denote di�erent concepts in the indoor domain.
Consider, e.g., the word ‘fan’, cf. Table 3. It is quite clear that ‘a device for
creating a current of air by movement of a surface or surfaces’ is meant, rather
than ‘an enthusiastic devotee of sports,’ or ‘an ardent follower and admirer.’7
While in that case the indoor domain provides enough context to disambiguate
the di�erent meanings of the word ‘fan’, consider the word ‘keyboard’, cf. Table
4. We as humans know that there is one kind of keyboard that is a musical
instrument, and that there exists a di�erent kind of keyboard that constitutes a
computer input device and which shares only rather superficial properties with
the musical instrument.

In order to address the ambiguities stemming from word polysemy we make
use of the WordNet8 resources. To disambiguate between di�erent senses of the
mentioned words, we linked the OMICS-L terms with WordNet synsets in the
spirit of a semantic concordance [12], in which every noun occurrence is tagged
with its corresponding word sense.

The tagging was done manually. For each term in OMICS-L, all possible
synsets along with their WordNet definition glosses were displayed. An anno-
tator then had to select the appropriate word sense. In order to overcome the
problem of typos and spelling errors (e.g., ‘jitchen’ for ‘kitchen’) present in the

7Definitional glosses are taken from WordNet.
8http:/wordnet.princeton.edu/
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Figure 2: Part of a subtree of the WordNet taxonomy with OMICS-L-asserted
cooccurrences. Synsets have been replaced with their associated word labels
for ease of reading. Solid arrows denote hyponymy (WordNet), dotted arrows
denote a cooccurrence assertion (OMICS-L).

The WordNet hypernym/hyponym relation constitutes a taxonomical order
over synsets. Combining the lexical taxonomy of WordNet with the common-
sense knowledge from OMICS-L therefore allows us to relate object and location
types in an ontology. In order to restrict the ontology to cover commonsense
knowledge about the indoor environment domain, we performed a bottom-up
taxonomy extraction based on the distinct synsets in OMICS-LWM.

Extracting the full set of all hypernyms and all hyponyms of these synsets
yields a hypernym tree of 74,374 distinct synsets. If we omit hyponyms and
only extract the hypernyms of the matched synsets, the resulting tree contains
2,354 synsets.

Figure 2 shows a small and sparse subset of the extracted taxonomy, along
with links that express OMICS-L cooccurrence statements.

The resulting ontology is stored as an OWL-DL domain ontology. It can
readily be used as symbolic spatial knowledge base in the conceptual map of our
multi-layered conceptual spatial mapping approach [17] as well as its more recent
incarnation in the CogX project COARSE (Cognitive lAyered Representation
of Spatial knowledgE) [13].

In [6] we describe how the obtained commonsense cooccurrence priors and
the commonsense indoor taxonomy are used in a combined switching plan-
ner that combines classical planning and POMDP-based DT-planning [5]. The
OMICS-LWM-derived cooccurrence priors matrix and commonsense ontology is
too large to be directly used as a planning domain. Especially for DT planning,
its size would lead to an intractable explosion of the state space that needs to
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often biased to human interest, and omit the mundane and ordinary – e.g.,
ducks and baths are common, however faucets and baths are rarely mentioned
together. We mitigate those problems by first applying the square root function
to the counts, and then boost counts selectively using B. The resulting prior
then arguably better expresses commonsense knowledge which a contributor to
the OMICS project considered relevant for intelligent indoor robots. Table 2
shows some examples of the obtained cooccurrence priors.

4 Word Sense Disambiguation

The resulting cooccurrence matrix associates object words with location words.
Consequently it su�ers from the vagueness that penetrates natural language. As
mentioned earlier, the same word can have many di�erent meanings, depending
on the context. Although the domain of interest already restricts the context,
most mentioned words can still denote di�erent concepts in the indoor domain.
Consider, e.g., the word ‘fan’, cf. Table 3. It is quite clear that ‘a device for
creating a current of air by movement of a surface or surfaces’ is meant, rather
than ‘an enthusiastic devotee of sports,’ or ‘an ardent follower and admirer.’7
While in that case the indoor domain provides enough context to disambiguate
the di�erent meanings of the word ‘fan’, consider the word ‘keyboard’, cf. Table
4. We as humans know that there is one kind of keyboard that is a musical
instrument, and that there exists a di�erent kind of keyboard that constitutes a
computer input device and which shares only rather superficial properties with
the musical instrument.

In order to address the ambiguities stemming from word polysemy we make
use of the WordNet8 resources. To disambiguate between di�erent senses of the
mentioned words, we linked the OMICS-L terms with WordNet synsets in the
spirit of a semantic concordance [12], in which every noun occurrence is tagged
with its corresponding word sense.

The tagging was done manually. For each term in OMICS-L, all possible
synsets along with their WordNet definition glosses were displayed. An anno-
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The WordNet hypernym/hyponym relation constitutes a taxonomical order
over synsets. Combining the lexical taxonomy of WordNet with the common-
sense knowledge from OMICS-L therefore allows us to relate object and location
types in an ontology. In order to restrict the ontology to cover commonsense
knowledge about the indoor environment domain, we performed a bottom-up
taxonomy extraction based on the distinct synsets in OMICS-LWM.

Extracting the full set of all hypernyms and all hyponyms of these synsets
yields a hypernym tree of 74,374 distinct synsets. If we omit hyponyms and
only extract the hypernyms of the matched synsets, the resulting tree contains
2,354 synsets.

Figure 2 shows a small and sparse subset of the extracted taxonomy, along
with links that express OMICS-L cooccurrence statements.

The resulting ontology is stored as an OWL-DL domain ontology. It can
readily be used as symbolic spatial knowledge base in the conceptual map of our
multi-layered conceptual spatial mapping approach [17] as well as its more recent
incarnation in the CogX project COARSE (Cognitive lAyered Representation
of Spatial knowledgE) [13].

In [6] we describe how the obtained commonsense cooccurrence priors and
the commonsense indoor taxonomy are used in a combined switching plan-
ner that combines classical planning and POMDP-based DT-planning [5]. The
OMICS-LWM-derived cooccurrence priors matrix and commonsense ontology is
too large to be directly used as a planning domain. Especially for DT planning,
its size would lead to an intractable explosion of the state space that needs to
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often biased to human interest, and omit the mundane and ordinary – e.g.,
ducks and baths are common, however faucets and baths are rarely mentioned
together. We mitigate those problems by first applying the square root function
to the counts, and then boost counts selectively using B. The resulting prior
then arguably better expresses commonsense knowledge which a contributor to
the OMICS project considered relevant for intelligent indoor robots. Table 2
shows some examples of the obtained cooccurrence priors.

4 Word Sense Disambiguation

The resulting cooccurrence matrix associates object words with location words.
Consequently it su�ers from the vagueness that penetrates natural language. As
mentioned earlier, the same word can have many di�erent meanings, depending
on the context. Although the domain of interest already restricts the context,
most mentioned words can still denote di�erent concepts in the indoor domain.
Consider, e.g., the word ‘fan’, cf. Table 3. It is quite clear that ‘a device for
creating a current of air by movement of a surface or surfaces’ is meant, rather
than ‘an enthusiastic devotee of sports,’ or ‘an ardent follower and admirer.’7
While in that case the indoor domain provides enough context to disambiguate
the di�erent meanings of the word ‘fan’, consider the word ‘keyboard’, cf. Table
4. We as humans know that there is one kind of keyboard that is a musical
instrument, and that there exists a di�erent kind of keyboard that constitutes a
computer input device and which shares only rather superficial properties with
the musical instrument.

In order to address the ambiguities stemming from word polysemy we make
use of the WordNet8 resources. To disambiguate between di�erent senses of the
mentioned words, we linked the OMICS-L terms with WordNet synsets in the
spirit of a semantic concordance [12], in which every noun occurrence is tagged
with its corresponding word sense.

The tagging was done manually. For each term in OMICS-L, all possible
synsets along with their WordNet definition glosses were displayed. An anno-
tator then had to select the appropriate word sense. In order to overcome the
problem of typos and spelling errors (e.g., ‘jitchen’ for ‘kitchen’) present in the
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The WordNet hypernym/hyponym relation constitutes a taxonomical order
over synsets. Combining the lexical taxonomy of WordNet with the common-
sense knowledge from OMICS-L therefore allows us to relate object and location
types in an ontology. In order to restrict the ontology to cover commonsense
knowledge about the indoor environment domain, we performed a bottom-up
taxonomy extraction based on the distinct synsets in OMICS-LWM.

Extracting the full set of all hypernyms and all hyponyms of these synsets
yields a hypernym tree of 74,374 distinct synsets. If we omit hyponyms and
only extract the hypernyms of the matched synsets, the resulting tree contains
2,354 synsets.

Figure 2 shows a small and sparse subset of the extracted taxonomy, along
with links that express OMICS-L cooccurrence statements.

The resulting ontology is stored as an OWL-DL domain ontology. It can
readily be used as symbolic spatial knowledge base in the conceptual map of our
multi-layered conceptual spatial mapping approach [17] as well as its more recent
incarnation in the CogX project COARSE (Cognitive lAyered Representation
of Spatial knowledgE) [13].

In [6] we describe how the obtained commonsense cooccurrence priors and
the commonsense indoor taxonomy are used in a combined switching plan-
ner that combines classical planning and POMDP-based DT-planning [5]. The
OMICS-LWM-derived cooccurrence priors matrix and commonsense ontology is
too large to be directly used as a planning domain. Especially for DT planning,
its size would lead to an intractable explosion of the state space that needs to
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Situated Resolution and Generation
of Spatial Referring Expressions for Robotic Assistants⇤
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Language Technology Lab, German Research Center for Artificial Intelligence (DFKI)

Saarbrücken, Germany
{zender, gj, ivana.kruijff}@dfki.de

Abstract
In this paper we present an approach to the task
of generating and resolving referring expressions
(REs) for conversational mobile robots. It is based
on a spatial knowledge base encompassing both
robot- and human-centric representations. Existing
algorithms for the generation of referring expres-
sions (GRE) try to find a description that uniquely
identifies the referent with respect to other enti-
ties that are in the current context. Mobile robots,
however, act in large-scale space, that is, environ-
ments that are larger than what can be perceived at a
glance, e.g., an office building with different floors,
each containing several rooms and objects. One
challenge when referring to elsewhere is thus to in-
clude enough information so that the interlocutors
can extend their context appropriately. We address
this challenge with a method for context construc-
tion that can be used for both generating and resolv-
ing REs – two previously disjoint aspects. Our ap-
proach is embedded in a bi-directional framework
for natural language processing for robots.

1 Introduction
The past years have seen an extraordinary increase in research
on robotic assistants that help the users perform their daily
chores. Although the autonomous vacuum cleaner “Roomba”
has already found its way into people’s homes and lives, there
is still a long way until fully conversational robot “gophers”
will be able to assist people in more demanding everyday
tasks. For example, imagine a robot that can deliver objects
and give directions to visitors on a university campus. Such a
robot must be able to verbalize its knowledge in a way that is
understandable by humans, as illustrated in Figure 1.

A conversational robot will inevitably face situations in
which it needs to refer to an entity (e.g., an object, a locality,
or even an event) that is located somewhere outside the cur-
rent scene. There are conceivably many ways in which a robot
might refer to things in the world, but many such expressions
are unsuitable in most human-robot dialogues. Consider the
following set of examples:

⇤Supported by the EU FP7 Project “CogX” (FP7-ICT-215181).

Where is the 

IT Help desk? It is on the 

1st floor in 

building 3b.

it is at
<45.56, -3.92, 10.45>

Where is the 
IT help desk? It is on the 1st 

floor in building 
3B.

It is at

Figure 1: Situated dialogue with a campus service robot

1. “position P = h45.56,�3.92, 10.45i”
2. “the area”
3. “Peter’s office at the end of the corridor on the third floor

of the Acme Corp. building 7 in the Acme Corp. com-
plex, 47 Evergreen Terrace, Calisota, Earth, (...)”

Clearly, these REs are valid descriptions of the respec-
tive entities in the robot’s world representation. Still they
fail to achieve their communicative goal, which is to specify
the right amount of information so that the hearer can easily
uniquely identify what is meant. The following expressions
might serve as more appropriate variants of the previous ex-
amples (in certain situations! ):

1. “the IT help desk”
2. “the large hall on the first floor”
3. “Peter’s office”
However, the question remains how a natural language pro-

cessing (NLP) system can generate such expressions which
are suitable in a given situation. In this paper we identify
some of the challenges that an NLP system for situated dia-
logue about large-scale space needs to address. We present
a situated model for generating and resolving REs that ad-
dresses these issues, with a special focus on how a conver-
sational mobile robot can produce and interpret such expres-
sions against an appropriate part of its acquired knowledge
base (KB). One benefit of our approach is that most com-
ponents, including the situated model and the linguistic re-
sources, are bi-directional, i.e., they use the same representa-
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Generating referring expressions

ring!

ring!

ring!
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Generating referring expressions

ring!

ring!

ring!

it's for 
hendrik.

robot, could 
you tell him 

there's a 
call for him 

on this 
phone!
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Generating referring expressions

must deliver message...

must deliver message...
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Generating referring expressions

must deliver message...

must deliver message...

gotcha!

there's a 

call for 

you on ...

on...

errr...
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there's a 

call for 

you on ...

on...

errr...
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there's a 

call for 

you on ...

on...

errr...

?
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there's a 

call for 

you on ...

on...

errr...

?

?

?
!

?
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there's a 

call for 

you on ...

on...

errr...

?

?

?
!

?
... The phone on 

the desk in GJ's 

office!
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Containment and abstraction
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Containment and abstraction

phone1 desk

phone2

office1 kitchen

phone3

floor1

corridor office2

building

phone4
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8
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Self-Understanding & Self-Extension:
A Systems and Representational Approach
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Abstract—There are many different approaches to building
a system that can engage in autonomous mental development.
In this paper we present an approach based on what we term
self-understanding, by which we mean the explicit representation
of and reasoning about what a system does and doesn’t know,
and how that knowledge changes under action. We present an
architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental
development, which we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a goal management and planning system for
setting and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly au-
tonomous fashion? Autonomous learning requires that

the agent pick its own learning goals. One way to achieve
this is to give that agent representations of what it knows and
doesn’t know, and to make it reason with these representations
to set its own epistemic goals. An epistemic goal is a goal
to be in a certain knowledge state. This paper describes this
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any time, i.e. representations of their epistemic state.
We also describe representations of how this epistemic state
will change under action. Such representations, together with
algorithms for reasoning about them confer a degree of self-
understanding, and allow the agent to plan how to extend its
abilities, or knowledge of the environment, i.e. self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals.
This mechanism is necessary to allow our approach to scale,
since if a robot generates many possible learning goals the
time taken to plan for them all will be too great.
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We first define self-understanding and self-extension as we
see them. To do this it is necessary to characterise the different
types of incompleteness in knowledge that will be represented.
We use incompleteness as an umbrella term to cover many
different types of knowledge gaps and uncertainty about
knowledge. We can construct a typology of incompleteness in
knowledge based on three dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that
is incomplete, and whether the incompleteness is represented
in a quantitative or qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that are
part of a model of the world and which have a defined set
of possible values or hypotheses from which the true value is
known to be drawn. We refer to this as simple uncertainty.
We can also have uncertainty about the number of variables
needed in a model, i.e. about the model complexity. Finally
we can also have cases where the agent knows that a variable
is of an unexperienced class, i.e. there is novelty. This can
include cases where the variables are continuous but where
the observation models for a class are quite confident and
do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Five
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, procedural
knowledge about how to act in certain situations to achieve
certain goals, knowledge consisting of predictions of action
outcomes or events, and knowledge about their causes. Finally
there is a question about whether the representation is quali-
tative or quantitative. In qualitative representations we simply
have a set of possible values for the variable, or a statement
that the variable value is unknown, or knowledge that there
may be many variables that are unmodelled. In quantitative
representations we will have some kind of scalar values
attached to hypotheses (such as whether there is novelty or
not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not
mean that the underlying space for the variable is continuous
or discrete, but instead that the way the incompleteness is
represented involves an expression of a degree of preference
for one hypothesis or statement versus another.

Given this brief characterisation of different types of incom-
pleteness we can define self-understanding and self-extension
compactly as follows. A system with self-understanding is
any system with explicit representations that captures some
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8
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Abstract—There are many different approaches to building
a system that can engage in autonomous mental development.
In this paper we present an approach based on what we term
self-understanding, by which we mean the explicit representation
of and reasoning about what a system does and doesn’t know,
and how that knowledge changes under action. We present an
architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental
development, which we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a goal management and planning system for
setting and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly au-
tonomous fashion? Autonomous learning requires that

the agent pick its own learning goals. One way to achieve
this is to give that agent representations of what it knows and
doesn’t know, and to make it reason with these representations
to set its own epistemic goals. An epistemic goal is a goal
to be in a certain knowledge state. This paper describes this
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any time, i.e. representations of their epistemic state.
We also describe representations of how this epistemic state
will change under action. Such representations, together with
algorithms for reasoning about them confer a degree of self-
understanding, and allow the agent to plan how to extend its
abilities, or knowledge of the environment, i.e. self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals.
This mechanism is necessary to allow our approach to scale,
since if a robot generates many possible learning goals the
time taken to plan for them all will be too great.
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We first define self-understanding and self-extension as we
see them. To do this it is necessary to characterise the different
types of incompleteness in knowledge that will be represented.
We use incompleteness as an umbrella term to cover many
different types of knowledge gaps and uncertainty about
knowledge. We can construct a typology of incompleteness in
knowledge based on three dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that
is incomplete, and whether the incompleteness is represented
in a quantitative or qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that are
part of a model of the world and which have a defined set
of possible values or hypotheses from which the true value is
known to be drawn. We refer to this as simple uncertainty.
We can also have uncertainty about the number of variables
needed in a model, i.e. about the model complexity. Finally
we can also have cases where the agent knows that a variable
is of an unexperienced class, i.e. there is novelty. This can
include cases where the variables are continuous but where
the observation models for a class are quite confident and
do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Five
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, procedural
knowledge about how to act in certain situations to achieve
certain goals, knowledge consisting of predictions of action
outcomes or events, and knowledge about their causes. Finally
there is a question about whether the representation is quali-
tative or quantitative. In qualitative representations we simply
have a set of possible values for the variable, or a statement
that the variable value is unknown, or knowledge that there
may be many variables that are unmodelled. In quantitative
representations we will have some kind of scalar values
attached to hypotheses (such as whether there is novelty or
not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not
mean that the underlying space for the variable is continuous
or discrete, but instead that the way the incompleteness is
represented involves an expression of a degree of preference
for one hypothesis or statement versus another.

Given this brief characterisation of different types of incom-
pleteness we can define self-understanding and self-extension
compactly as follows. A system with self-understanding is
any system with explicit representations that captures some

Belief Modelling for Situation Awareness in Human-Robot Interaction

Pierre Lison, Carsten Ehrler and Geert-Jan M. Kruijff

Abstract— To interact naturally with humans, robots needs
to be aware of their own surroundings. This awareness is
usually encoded in some implicit or explicit representation of
the situated context. In this paper, we present a new framework
for constructing rich belief models of the robot’s environment.
Key to our approach is the use of Markov Logic as a unified
framework for inference over these beliefs. Markov Logic is
a combination of first-order logic and probabilistic graphical
models. Its expressive power allows us to capture both the rich
relational structure of the environment and the uncertainty
arising from the noise and incompleteness of low-level sensory
data. The constructed belief models evolve dynamically over
time and incorporate various contextual information such
as spatio-temporal framing, multi-agent epistemic status, and
saliency measures. Beliefs can also be referenced and extended
“top-down” via linguistic communication. The approach is
being integrated into a cognitive architecture for mobile robots
interacting with humans using spoken dialogue.

I. INTRODUCTION

The situated context plays a central role in human-robot
interaction (HRI). To be able to interact naturally with
humans, robots needs to be aware of their own environment.
This situation awareness is generally expressed in some sort
of belief models in which various aspects of the external
reality are encoded. Such belief models provide an explicit
or implicit representation for the current state of the world,
from the robot’s viewpoint. They therefore serve as a repre-
sentational backbone for a wide range of high-level cognitive
capabilities related to reasoning, planning and learning in
complex and dynamic environments. They are also essential
for the robot to verbalise its own knowledge.

In speech-based HRI, critical tasks in dialogue under-
standing, management and production are directly depen-
dent on such belief models. Examples are context-sensitive
speech recognition [15], reference resolution and generation
in small- [11] and large-scale space [24], spoken dialogue
parsing [14] and interpretation [20], dialogue management
[23], user-tailored response generation [22], and contextually
appropriate intonation patterns [13]. Contextual knowledge is
also a prerequisite for the dynamic adaptation of the robot’s
behaviour to different environments and interlocutors [3].

Belief models are usually expressed as high level symbolic
representations merging and abstracting information over
multiple modalities. For HRI, the incorporated knowledge
might include (inter alia): entities in the visual scene, spatial
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structure, user profiles (intentional and attentional state,
preferences), dialogue histories, and task models (what is
to be done, which actions are available).

The construction of such belief models raises two impor-
tant issues. The first question to address is how these high-
level representations can be reliably abstracted from low-
level sensory data [1], [18]. To be meaningful, most symbolic
representations should be grounded in (subsymbolic) sensory
inputs [19]. This is a difficult problem, partly because of
the noise and uncertainty contained in sensory data (partial
observability), and partly because the connection between
low-level perception and high-level symbols is typically
difficult to formalise in a general way [6].

The second issue relates to how information arising from
different modalities and time points can be efficiently merged
into unified multi-modal structures [12], and how these
inputs can refine and constrain each other to yield improved
estimations, over time. This is the well-known engineering
problem of multi-target, multi-sensor data fusion [5].

Belief models are thus the final product of an iterative
process of information fusion, refinement and abstraction.
Typical HRI environments are challenging to model, being
simultaneously complex, multi-agent, dynamic and uncertain.
Four requirements can be formulated:

1) HRI environments are complex and reveal a large
amount of internal structure (for instance, spatial re-
lations between entities, or groupings of objects). The
formal representations used to model them must there-
fore possess the expressive power to reflect this rich
relational structure.

2) Interactive robots are made for multi-agent settings.
Making sense of communicative acts requires the
ability to distinguish between one’s own knowledge
(what I believe), knowledge attributed to others (what
I think the others believe), and shared common ground
knowledge (what we believe as a group).

3) Situated interactions are dynamic and evolve over time.
The incorporation of spatio-temporal framing is thus
necessary to go beyond the “here-and-now” and be ca-
pable of linking the present with (episodic) memories
of the past and anticipation of future events.

4) And last but not least, due to the partial observability of
most contextual features, it is crucial that belief models
incorporate an explicit account of uncertainties.

Orthogonal to these “representational” requirements, cru-
cial performance requirements must also be adressed. To
keep up with a continuously changing environment, all
operations on belief models (updates, queries, etc.) must be
performed under soft real-time constraints.
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8
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Self-Understanding & Self-Extension:
A Systems and Representational Approach
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Abstract—There are many different approaches to building
a system that can engage in autonomous mental development.
In this paper we present an approach based on what we term
self-understanding, by which we mean the explicit representation
of and reasoning about what a system does and doesn’t know,
and how that knowledge changes under action. We present an
architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental
development, which we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a goal management and planning system for
setting and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly au-
tonomous fashion? Autonomous learning requires that

the agent pick its own learning goals. One way to achieve
this is to give that agent representations of what it knows and
doesn’t know, and to make it reason with these representations
to set its own epistemic goals. An epistemic goal is a goal
to be in a certain knowledge state. This paper describes this
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any time, i.e. representations of their epistemic state.
We also describe representations of how this epistemic state
will change under action. Such representations, together with
algorithms for reasoning about them confer a degree of self-
understanding, and allow the agent to plan how to extend its
abilities, or knowledge of the environment, i.e. self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals.
This mechanism is necessary to allow our approach to scale,
since if a robot generates many possible learning goals the
time taken to plan for them all will be too great.
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We first define self-understanding and self-extension as we
see them. To do this it is necessary to characterise the different
types of incompleteness in knowledge that will be represented.
We use incompleteness as an umbrella term to cover many
different types of knowledge gaps and uncertainty about
knowledge. We can construct a typology of incompleteness in
knowledge based on three dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that
is incomplete, and whether the incompleteness is represented
in a quantitative or qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that are
part of a model of the world and which have a defined set
of possible values or hypotheses from which the true value is
known to be drawn. We refer to this as simple uncertainty.
We can also have uncertainty about the number of variables
needed in a model, i.e. about the model complexity. Finally
we can also have cases where the agent knows that a variable
is of an unexperienced class, i.e. there is novelty. This can
include cases where the variables are continuous but where
the observation models for a class are quite confident and
do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Five
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, procedural
knowledge about how to act in certain situations to achieve
certain goals, knowledge consisting of predictions of action
outcomes or events, and knowledge about their causes. Finally
there is a question about whether the representation is quali-
tative or quantitative. In qualitative representations we simply
have a set of possible values for the variable, or a statement
that the variable value is unknown, or knowledge that there
may be many variables that are unmodelled. In quantitative
representations we will have some kind of scalar values
attached to hypotheses (such as whether there is novelty or
not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not
mean that the underlying space for the variable is continuous
or discrete, but instead that the way the incompleteness is
represented involves an expression of a degree of preference
for one hypothesis or statement versus another.

Given this brief characterisation of different types of incom-
pleteness we can define self-understanding and self-extension
compactly as follows. A system with self-understanding is
any system with explicit representations that captures some

Belief Modelling for Situation Awareness in Human-Robot Interaction

Pierre Lison, Carsten Ehrler and Geert-Jan M. Kruijff

Abstract— To interact naturally with humans, robots needs
to be aware of their own surroundings. This awareness is
usually encoded in some implicit or explicit representation of
the situated context. In this paper, we present a new framework
for constructing rich belief models of the robot’s environment.
Key to our approach is the use of Markov Logic as a unified
framework for inference over these beliefs. Markov Logic is
a combination of first-order logic and probabilistic graphical
models. Its expressive power allows us to capture both the rich
relational structure of the environment and the uncertainty
arising from the noise and incompleteness of low-level sensory
data. The constructed belief models evolve dynamically over
time and incorporate various contextual information such
as spatio-temporal framing, multi-agent epistemic status, and
saliency measures. Beliefs can also be referenced and extended
“top-down” via linguistic communication. The approach is
being integrated into a cognitive architecture for mobile robots
interacting with humans using spoken dialogue.

I. INTRODUCTION

The situated context plays a central role in human-robot
interaction (HRI). To be able to interact naturally with
humans, robots needs to be aware of their own environment.
This situation awareness is generally expressed in some sort
of belief models in which various aspects of the external
reality are encoded. Such belief models provide an explicit
or implicit representation for the current state of the world,
from the robot’s viewpoint. They therefore serve as a repre-
sentational backbone for a wide range of high-level cognitive
capabilities related to reasoning, planning and learning in
complex and dynamic environments. They are also essential
for the robot to verbalise its own knowledge.

In speech-based HRI, critical tasks in dialogue under-
standing, management and production are directly depen-
dent on such belief models. Examples are context-sensitive
speech recognition [15], reference resolution and generation
in small- [11] and large-scale space [24], spoken dialogue
parsing [14] and interpretation [20], dialogue management
[23], user-tailored response generation [22], and contextually
appropriate intonation patterns [13]. Contextual knowledge is
also a prerequisite for the dynamic adaptation of the robot’s
behaviour to different environments and interlocutors [3].

Belief models are usually expressed as high level symbolic
representations merging and abstracting information over
multiple modalities. For HRI, the incorporated knowledge
might include (inter alia): entities in the visual scene, spatial
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structure, user profiles (intentional and attentional state,
preferences), dialogue histories, and task models (what is
to be done, which actions are available).

The construction of such belief models raises two impor-
tant issues. The first question to address is how these high-
level representations can be reliably abstracted from low-
level sensory data [1], [18]. To be meaningful, most symbolic
representations should be grounded in (subsymbolic) sensory
inputs [19]. This is a difficult problem, partly because of
the noise and uncertainty contained in sensory data (partial
observability), and partly because the connection between
low-level perception and high-level symbols is typically
difficult to formalise in a general way [6].

The second issue relates to how information arising from
different modalities and time points can be efficiently merged
into unified multi-modal structures [12], and how these
inputs can refine and constrain each other to yield improved
estimations, over time. This is the well-known engineering
problem of multi-target, multi-sensor data fusion [5].

Belief models are thus the final product of an iterative
process of information fusion, refinement and abstraction.
Typical HRI environments are challenging to model, being
simultaneously complex, multi-agent, dynamic and uncertain.
Four requirements can be formulated:

1) HRI environments are complex and reveal a large
amount of internal structure (for instance, spatial re-
lations between entities, or groupings of objects). The
formal representations used to model them must there-
fore possess the expressive power to reflect this rich
relational structure.

2) Interactive robots are made for multi-agent settings.
Making sense of communicative acts requires the
ability to distinguish between one’s own knowledge
(what I believe), knowledge attributed to others (what
I think the others believe), and shared common ground
knowledge (what we believe as a group).

3) Situated interactions are dynamic and evolve over time.
The incorporation of spatio-temporal framing is thus
necessary to go beyond the “here-and-now” and be ca-
pable of linking the present with (episodic) memories
of the past and anticipation of future events.

4) And last but not least, due to the partial observability of
most contextual features, it is crucial that belief models
incorporate an explicit account of uncertainties.

Orthogonal to these “representational” requirements, cru-
cial performance requirements must also be adressed. To
keep up with a continuously changing environment, all
operations on belief models (updates, queries, etc.) must be
performed under soft real-time constraints.
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Abstract. Human-Robot Interaction (HRI) invariably involves dialogue about
objects in the environment in which the agents are situated. The paper focuses
on the issue of resolving discourse references to such visual objects. The paper
addresses the problem using strategies for intra-modal fusion (identifying that
different occurrences concern the same object), and inter-modal fusion, (relating
object references across different modalities). Core to these strategies are sensori-
motoric coordination, and ontology-based mediation between content in different
modalities. The approach has been fully implemented, and is illustrated with sev-
eral working examples.

1 Introduction

The context of this work is the development of dialog systems for human-robot collab-
oration. The framework presented in this paper addresses a particular aspect of situated
dialog, namely reference resolution. Reference resolution in situated dialog is a par-
ticular instance of the anchoring problem [Coradeschi and Saffiotti, 2003]: how can an
artificial system create and maintain correspondences between the symbols and sensor
data that refer to the same physical object?

In a dialog, human participants expect their partner to construct and maintain a
model of the evolving linguistic context. Each referring expression used in the dialog
introduces a representation into the semantics of its utterance. This representation must
be bound to an element in the context model in order for the utterance’s semantics to
be fully resolved. Referring expressions that access a representation in the context are
called anaphoric. In a situated dialog, human participants expect their partner to not
only construct and maintain a model of the linguistic discourse, but also to have full
perceptual knowledge of the environment. This introduces a form of reference, called
exophoric reference. Exophoric references denote objects that have entered the dialog
context through a non-linguistic modality (such as vision), but have not been previously
evoked into the context. Consequently, for a robot to participate in a situated dialog,
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ABSTRACT
Operating in a physical context, an intelligent robot faces
two fundamental problems. First, it needs to combine infor-
mation from its di↵erent sensors to form a representation of
the environment that is more complete than any of its sen-
sors on its own could provide. Second, it needs to combine
high-level representations (such as those for planning and
dialogue) with its sensory information, to ensure that the in-
terpretations of these symbolic representations are grounded
in the situated context. Previous approaches to this prob-
lem have used techniques such as (low-level) information fu-
sion, ontological reasoning, and (high-level) concept learn-
ing. This paper presents a framework in which these, and
other approaches, can be combined to form a shared rep-
resentation of the current state of the robot in relation to
its environment and other agents. Preliminary results from
an implemented system are presented to illustrate how the
framework supports behaviours commonly required of an in-
telligent robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design

1. INTRODUCTION
An information-processing architecture for robotics is typ-

ically composed of a large number of cooperating subsys-
tems, such as natural language analysis and production,
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computer vision, motoric skills, and various deliberative pro-
cesses such as symbolic planners. The challenge addressed in
this paper is the production and maintenance of a model of
the world for a robot situated in“everyday”scenarios involv-
ing human interaction. This requires a method for binding
representations across the subsystems. This world model
should adequately reflect the aspects of the world that are
stable in the medium term, whilst incorporating more dy-
namic aspects.

Throughout this paper we will primarily consider a robot
that can interact with a human and a set of objects on a
tabletop. For example, when faced with a scene containing
a red mug, a blue cup and a blue bowl, the robot may be
asked to“put the blue things to the left of the red thing”. For
a system to be able to perform such a task e↵ectively, it must
be able to build a representation that connects the (low-level
and modality specific) information about the world and the
(high-level and amodal) representations that can be used to
interpret the utterance, determine the desired world state,
and plan behaviour. As resulting actions must be executed
in the world, the representation must allow the robot to
ultimately access the low-level (i.e. metric) information from
which its higher-level representations are derived.

Any design for a system to tackle the above task must
focus on creating such a representation, and grounding it in
the environment of the robot. In addition to this, the engi-
neering e↵ort of integrating the various information-processing
subsystems with the representation must be considered. Af-
ter all, since the robot is an engineered system, every com-
ponent must be put there by means of human e↵ort.

The grounding problem is entangled with the engineering
problem of subsystem integration and cannot be considered
in isolation. Grounding can generally be seen as the process
of establishing the relation between a representation in one
domain with that of another. One special case is is when
one of the domains is the external world, i.e. “reality”:

The term grounding [denotes] the processes by
which an agent relates beliefs to external physical
objects. Agents use grounding processes to con-
struct models of, predict, and react to, their ex-
ternal environment. Language grounding refers
to processes specialised for relating words and
speech acts to a language user’s environment via
grounded beliefs. [11] p. 8

WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 1

Self-Understanding & Self-Extension:
A Systems and Representational Approach

Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc Hanheide, Nick Hawes,
Patric Jensfelt, Matej Kristan, Geert-Jan M. Kruijff, Pierre Lison, Andrzej Pronobis,

Kristoffer Sjöö, Alen Vrečko, Hendrik Zender, Michael Zillich, Danijel Skočaj

Abstract—There are many different approaches to building
a system that can engage in autonomous mental development.
In this paper we present an approach based on what we term
self-understanding, by which we mean the explicit representation
of and reasoning about what a system does and doesn’t know,
and how that knowledge changes under action. We present an
architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental
development, which we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a goal management and planning system for
setting and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly au-
tonomous fashion? Autonomous learning requires that

the agent pick its own learning goals. One way to achieve
this is to give that agent representations of what it knows and
doesn’t know, and to make it reason with these representations
to set its own epistemic goals. An epistemic goal is a goal
to be in a certain knowledge state. This paper describes this
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any time, i.e. representations of their epistemic state.
We also describe representations of how this epistemic state
will change under action. Such representations, together with
algorithms for reasoning about them confer a degree of self-
understanding, and allow the agent to plan how to extend its
abilities, or knowledge of the environment, i.e. self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals.
This mechanism is necessary to allow our approach to scale,
since if a robot generates many possible learning goals the
time taken to plan for them all will be too great.
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with KTH Stockholm, email: {patric,krsj,pronobis,aydemir}@csc.kth.se
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We first define self-understanding and self-extension as we
see them. To do this it is necessary to characterise the different
types of incompleteness in knowledge that will be represented.
We use incompleteness as an umbrella term to cover many
different types of knowledge gaps and uncertainty about
knowledge. We can construct a typology of incompleteness in
knowledge based on three dimensions of variability. These are
the nature of the incompleteness, the type of knowledge that
is incomplete, and whether the incompleteness is represented
in a quantitative or qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that are
part of a model of the world and which have a defined set
of possible values or hypotheses from which the true value is
known to be drawn. We refer to this as simple uncertainty.
We can also have uncertainty about the number of variables
needed in a model, i.e. about the model complexity. Finally
we can also have cases where the agent knows that a variable
is of an unexperienced class, i.e. there is novelty. This can
include cases where the variables are continuous but where
the observation models for a class are quite confident and
do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Five
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, procedural
knowledge about how to act in certain situations to achieve
certain goals, knowledge consisting of predictions of action
outcomes or events, and knowledge about their causes. Finally
there is a question about whether the representation is quali-
tative or quantitative. In qualitative representations we simply
have a set of possible values for the variable, or a statement
that the variable value is unknown, or knowledge that there
may be many variables that are unmodelled. In quantitative
representations we will have some kind of scalar values
attached to hypotheses (such as whether there is novelty or
not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not
mean that the underlying space for the variable is continuous
or discrete, but instead that the way the incompleteness is
represented involves an expression of a degree of preference
for one hypothesis or statement versus another.

Given this brief characterisation of different types of incom-
pleteness we can define self-understanding and self-extension
compactly as follows. A system with self-understanding is
any system with explicit representations that captures some

Belief Modelling for Situation Awareness in Human-Robot Interaction

Pierre Lison, Carsten Ehrler and Geert-Jan M. Kruijff

Abstract— To interact naturally with humans, robots needs
to be aware of their own surroundings. This awareness is
usually encoded in some implicit or explicit representation of
the situated context. In this paper, we present a new framework
for constructing rich belief models of the robot’s environment.
Key to our approach is the use of Markov Logic as a unified
framework for inference over these beliefs. Markov Logic is
a combination of first-order logic and probabilistic graphical
models. Its expressive power allows us to capture both the rich
relational structure of the environment and the uncertainty
arising from the noise and incompleteness of low-level sensory
data. The constructed belief models evolve dynamically over
time and incorporate various contextual information such
as spatio-temporal framing, multi-agent epistemic status, and
saliency measures. Beliefs can also be referenced and extended
“top-down” via linguistic communication. The approach is
being integrated into a cognitive architecture for mobile robots
interacting with humans using spoken dialogue.

I. INTRODUCTION

The situated context plays a central role in human-robot
interaction (HRI). To be able to interact naturally with
humans, robots needs to be aware of their own environment.
This situation awareness is generally expressed in some sort
of belief models in which various aspects of the external
reality are encoded. Such belief models provide an explicit
or implicit representation for the current state of the world,
from the robot’s viewpoint. They therefore serve as a repre-
sentational backbone for a wide range of high-level cognitive
capabilities related to reasoning, planning and learning in
complex and dynamic environments. They are also essential
for the robot to verbalise its own knowledge.

In speech-based HRI, critical tasks in dialogue under-
standing, management and production are directly depen-
dent on such belief models. Examples are context-sensitive
speech recognition [15], reference resolution and generation
in small- [11] and large-scale space [24], spoken dialogue
parsing [14] and interpretation [20], dialogue management
[23], user-tailored response generation [22], and contextually
appropriate intonation patterns [13]. Contextual knowledge is
also a prerequisite for the dynamic adaptation of the robot’s
behaviour to different environments and interlocutors [3].

Belief models are usually expressed as high level symbolic
representations merging and abstracting information over
multiple modalities. For HRI, the incorporated knowledge
might include (inter alia): entities in the visual scene, spatial

This work was supported by the EU FP7 ICT Integrated Project “CogX:
cognitive systems that self-understand and self-extend” (FP7-ICT- 215181).

Pierre Lison, Carsten Ehrler and Geert-Jan M. Kruijff are
with the German Research Centre for Artificial Intelligence
(DFKI GmbH), Language Technology Lab, Saarbrücken, Germany.
{plison,carsten.ehrler,gj}@dfki.de

structure, user profiles (intentional and attentional state,
preferences), dialogue histories, and task models (what is
to be done, which actions are available).

The construction of such belief models raises two impor-
tant issues. The first question to address is how these high-
level representations can be reliably abstracted from low-
level sensory data [1], [18]. To be meaningful, most symbolic
representations should be grounded in (subsymbolic) sensory
inputs [19]. This is a difficult problem, partly because of
the noise and uncertainty contained in sensory data (partial
observability), and partly because the connection between
low-level perception and high-level symbols is typically
difficult to formalise in a general way [6].

The second issue relates to how information arising from
different modalities and time points can be efficiently merged
into unified multi-modal structures [12], and how these
inputs can refine and constrain each other to yield improved
estimations, over time. This is the well-known engineering
problem of multi-target, multi-sensor data fusion [5].

Belief models are thus the final product of an iterative
process of information fusion, refinement and abstraction.
Typical HRI environments are challenging to model, being
simultaneously complex, multi-agent, dynamic and uncertain.
Four requirements can be formulated:

1) HRI environments are complex and reveal a large
amount of internal structure (for instance, spatial re-
lations between entities, or groupings of objects). The
formal representations used to model them must there-
fore possess the expressive power to reflect this rich
relational structure.

2) Interactive robots are made for multi-agent settings.
Making sense of communicative acts requires the
ability to distinguish between one’s own knowledge
(what I believe), knowledge attributed to others (what
I think the others believe), and shared common ground
knowledge (what we believe as a group).

3) Situated interactions are dynamic and evolve over time.
The incorporation of spatio-temporal framing is thus
necessary to go beyond the “here-and-now” and be ca-
pable of linking the present with (episodic) memories
of the past and anticipation of future events.

4) And last but not least, due to the partial observability of
most contextual features, it is crucial that belief models
incorporate an explicit account of uncertainties.

Orthogonal to these “representational” requirements, cru-
cial performance requirements must also be adressed. To
keep up with a continuously changing environment, all
operations on belief models (updates, queries, etc.) must be
performed under soft real-time constraints.
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Dialogue 
Management

Dialogue 
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Dialogue 
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Belief b1

Ontological category:     visual object

Epistemic status:              {robot}

Spatio-temporal frame:    {N3(μ,Σ), [t1,t2]}

Content

〈Label〉

〈Colour〉

Mug (0.7)

Unknown (0.3)

Red (0.8)
Orange (0.2)

〈Size〉

〈LeftOf〉

p

b2  ∧  b3  (0.9)

b2 (0.1)

History:

{

{

{
Ancestors: {b4,b5}
Offspring: {b6, b7}{

Belief b3

Belief b2
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Abduction

Intention as explanation

Explanation for behavior, 

why something is (to be) said, and 
how the communicated content “fits 
in” (updates beliefs)

Abductive inference

Given observations O, 
if P were the case, then O; 
Hence, reason to believe that P

Non-monotonicity: P, and P → O

“Weighted” abduction reformulated 
as logical-probabilistic reasoning over 
assumptions and assertions

Continual Processing of Situated Dialogue
in Human-Robot Collaborative Activities

Geert-Jan M. Kruijff, Miroslav Janı́ček and Pierre Lison
Language Technology Lab

German Research Center for Artificial Intelligence, DFKI GmbH
{gj,miroslav.janicek,pierre.lison}@dfki.de

Abstract—This paper presents an implemented approach of
processing situated dialogue between a human and a robot.
The focus is on task-oriented dialogue, set in the larger
context of human-robot collaborative activity. The approach
models understanding and production of dialogue to include
intension (what isbeingtalked about), intention (thegoal of why
something is being said), and attention (what is being focused
on). These dimensions are directly construed in terms of as-
sumptionsand assertionson situated multi-agent belief models.
The approach is continual in that it allows for interpretations
to be dynamically retracted, revised, or deferred. Thismakes it
possible to deal with the inherent asymmetry in how robotsand
humanstend to understand dialogue, and theworld in which it
isset. Theapproach hasbeen fully implemented, and integrated
into a cognitive robot. The paper discusses the implementation,
and illustrates it in a collaborative learning setting.

I. INTRODUCTION

Particularly in task-oriented dialogues between a human
and a robot, there is more to dialogue than just understanding
words. The robot needs to understand what is being talked
about, but it also needs to understand why it was told
something. In other words, what the human intends the robot
to do with the information, in the larger context of their joint
activity.

In this paper we see task-oriented dialogue as part of a
larger collaborative activity, in which a human and the robot
are involved. They are planning together, executing their
plans. Dialogue plays a facilitatory role in this. It helps all
participants build up a common ground, and maintain it as
plans are executed, and the world around them changes.

We present here an approach that models these aspects of
situated task-oriented dialogue. We provide an algorithm in
which dialogue is understood, and generated, by looking at
why something is being said (intention), what that something
is about (intension), and how that helps to direct the focus
(attention). Core to the algorithm is abductive reasoning.
This type of reasoning tries to find the best explanation for
observations. In our case, it tries to find the best explanation
for why something was said (understanding), or how an
intention best could be achieved communicatively (gener-
ation). Thereby, abduction directly works off the situated,
multi-agent belief models the robot maintains as part of its
understanding of the world, and of the agents acting therein.

Our approach views dialogue from a more intentional
perspective, like the work by Grosz & Sidner [6], Lochbaum

et al. [10], and most recently Stone et al [14], [15], [16]. Our
approach extends that of Stone et al.

Stone et al. formulate an algorithm for collaborative
activity, involving abductive reasoning. They assume that
understanding and production are symmetric: “what I say
is how you understand it”. However, this is optimistic for
human-human dialogue, and rather unrealistic for human-
robot interaction. Robots hardly ever perfectly understand
what is meant. We need to allow for the robot to act upon
interpretations even when they are incomplete or uncertain.
And, should it turn out that the robot has misunderstood what
was said, roll dialogue back to a point where the robot can
clarify and correct its understanding.

Our approach enables these features by introducing as-
sertions into our logics. This idea is inspired by Brenner &
Nebel’s work on continual planning [3]. An assertion is a
content formula that needs to be verified at a later point.
In that, it is different from a propositional fact, which the
robot knows to be either true or false. We can introduce
an assertion into an abductive inference to help find an
explanation, and then act upon it. It is just that this is then
made contingent on the assertion to become true sooner or
later. In this paper, we show how assertions can play a
fundamental role in helping a robot and a human achieve
common ground in collaborative activity.

Below, §II provides a brief overview on intentional ap-
proaches to dialogue. §III presents our approach and dis-
cusses situated multi-agent belief models, abductive reason-
ing, and the algorithm for continual processing of collab-
orative activity. §IV discusses the implementation, and §V
illustrates it on working examples from an integrated robot
system.

II. BACKGROUND

Recent theories of dialogue focus on how participants can
obtain common ground through alignment [11]. Agents align
how they communicate content, what they pay attention to,
and what they intend to do next. They base this on how they
perceive each other’s views on the world.

This works out reasonably well as long as we can assume a
more or less common way of “looking” at things. Even when
humans normally differ in what they know, can, and intend
to do, there is typically a common categorical framework in
which they can characterize the world, in order to arrive at a
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Functional mapping

Intention recognition

Intention-in-referential-context

Explanation = Belief about what 
to do, where, and why

Example

Functional mapping: Projection 
of affordances into situation

“Go to the car” = Command to 
go to a particular area next to a 
car from where it is expectedly 
optimally possible for the robot 
to look inside said car to see 
whether there are victims inside
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FUNCTIONAL MAPPING FOR HUMAN-ROBOT COLLABORATIVE
EXPLORATION

Shanker Keshavdas & Geert-Jan M. Kruijff
German Research Center for Artificial Intelligence (DFKI)

Saarbrücken
Germany

{Shanker.Keshavdas,gj}@dfki.de

ABSTRACT
Our problem is one of a human-robot team exploring a
previously unknown disaster scenario together. The team
is building up situation awareness, gathering information
about the prescence and structure of specific objects of in-
terest like victims or threats. For a robot working with a
human team, there are several challenges. From the view-
point of task-work, there is time-pressure: The exploration
needs to be done efficiently, and effectively. From the view-
point of team-work, the robot needs to perform its tasks
together with the human users such that it is apparent to
the users why the robot is doing what it is doing. With-
out that, human users might fail to trust the robot, which
can negatively impact overall team performance. In this
paper, we present an approach to the field of semantic map-
ping, as a subset of robotic mapping; aiming to address the
problems in both efficiency (task), and apparency (team).
The approach models the environment from a geometrical-
functional viewpoint, establishing where the robot needs
to be, to be in an optimal position to gather particular in-
formation relative to a 3D-landmark in the environment.
The approach combines top-down logical and probabilis-
tic inferences about 3D-structure and robot morphology,
with bottom-up quantitative maps. The inferences result in
vantage positions for information gathering which are op-
timal in a quantitative sense (effectivity), and which mimic
human spatial understanding (apparency). A quantitative
evaluation shows that functional mapping leads to signifi-
cantly better vantage points than a naive approach.
KEY WORDS
Autonomous Robotics, Ontology, Semantic Mapping

1 Introduction

When a rescue team reaches a disaster environment, they
seldom have information about the spatial organization of
it. The tasks of the rescue team are then to typically ex-
plore the environment, identify objects of interest such as
victims, fires, explosive risks; and perform actions such as
rescuing victims and extinguishing threats. Among these
tasks, exploration and identification of “objects of interest”
such as victims, hazardous substances are tasks that are per-
formable by the robot. See Fig. 1 for illustrations of envi-
ronments in which we have deployed human-robot teams.

For example, in responding to a tunnel traffic accident the
priority is to search for victims (inside cars), whereas in
a freight train accident we need to assess the presence of
dangerous materials. Exploration of the environment helps
build an awareness of the situation which proves invaluable
to rescue workers. The traditional method of a robot build-
ing up it’s own spatial awareness is by building a metric
map i.e. of laser scans and visual information. However
that alone is of limited use to a rescue worker.

Instead rescue workers might be more interested in a
semantic map, which is described in [17] as a map which
contains in addition to metric information, assignment of
mapped features (laser, vision) to entities of known classes.
Further knowledge of these entities might be present in
some knowledge base with an associated reasoning engine.
Known or commonly expected entities in the case of a car
crash would be cars, victims and so on. In our approach,
we make use of a handwritten OWL/RDF-based ontology
based upon objects of interest that may be observed in a
disaster environment, and their relation to each other. We
present this information in more detail in §3.2.

Our approach to semantic mapping address both ef-
ficiency (task), and apparency (team). Our focus is on the
robot exploring and understanding the spatial structure of
the disaster environment from the viewpoint of information
gathering. Objects of interest often “contain” (in the topo-
logical sense) additional information that can be retrieved
from it. For example, a car might contain victims or a bar-
rel might have a label identifying the explosive substances
present within. In the former case, it would help for the
robot to be in optimally computed position to gather infor-
mation relative to the car i.e., the presence and locations
of victims in the car. This is a process of inference and
discovery. Upon the perception of a particular landmark,
inference establishes whether the landmark might contain
particular objects of interest. Gathering information then
turns into verifying whether these hypotheses hold, and if
verified, substantiating them as facts.

The context of our task is one of collaboration be-
tween humans and robots, with both being problem-
holders. The humans need a robot to provide them with
information about an environment which is too dangerous
for them to (currently) enter, whereas a robot needs the hu-
mans to help it to make sense of the environment or to find
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Example: instruction & mapping (2011)
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Using Task-Context

Priming using situation + task

Understanding is context-sensitive

Use salient situation (objects, features), task context, 
to prime

Priming in ASR

Lexical activation network to bias Language Model 
used in ASR

Dialogue state, situation, tasks

-16.1% reduction in WER over baseline (Nuance v8.5)

Priming in parsing

Parsing with CCGs: grammatical and non-
grammatical constructions to deal with complexity of 
dialogue

Discriminative parse selection during incremental 
parsing with CCG, needed to deal with #analyses

Use of audio, syntactic, semantic and context features 
to train perceptrons for parse selection models

Further reduction in WER (^semantics), ∆=-23.4%

Parsing time reduced by ∆=-51.9% without significant 
loss in performance against Gold Standard

EXAMPLE

• Given a visually salient red block
• Recognized by the robot as such
• Lexical association connects this

 “red block” to words like “block”,
 “square”, “pick up”, etc. 

• The language model is adapted to
 increase the probability of hearing
 these words. 
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Salience-driven Contextual Priming of Speech
Recognition for Human-Robot Interaction

Pierre Lison and Geert-Jan Kruijff 1

Abstract. The paper presents an implemented model for prim-
ing speech recognition, using contextual information about salient
entities. The underlying hypothesis is that, in human-robot interac-
tion, speech recognition performance can be improved by exploiting
knowledge about the immediate physical situation and the dialogue
history. To this end, visual salience (objects perceived in the physical
scene) and linguistic salience (objects, events already mentioned in
the dialogue) are integrated into a single cross-modal salience model.
The model is dynamically updated as the environment changes. It
is used to establish expectations about which words are most likely
to be heard in the given context. The update is realised by continu-
ously adapting the word-class probabilities specified in a statistical
language model. The paper discusses the motivations behind the ap-
proach, and presents the implementation as part of a cognitive archi-
tecture for mobile robots. Evaluation results on a test suite show a sta-
tistically significant improvement of salience-driven priming speech
recognition (WER) over a commercial baseline system.

1 Introduction
Service robots are becoming more and more sophisticated. In many
cases, these robots must operate in open-ended environments and in-
teract with humans using spoken natural language to perform a vari-
ety of service-oriented tasks. This has led to an increasing interest in
developing dialogue systems for robots [28, 15, 23]. A fundamental
challenge here is, how the robot can situate the dialogue: The robot
should be able to understand what is being said, and how that relates
to the physical situation [20, 25, 26, 11].

The relation between language and experience is often character-
ized as being bi-directional (cf. [14]). That is, language influences
how to perceive the environment – and vice versa, the physical situ-
ation provides a context against which to interpret language. In this
paper, we focus on how information from the dialogue- and situated
context can help guiding, and improving, automatic speech recog-
nition (ASR) in human-robot interaction (HRI). Spoken dialogue is
one of the most natural means of communication for humans. De-
spite significant technological advances, however, ASR remains for
most tasks at least an order of magnitude worse than that of human
listeners [17]. This particularly holds for using ASR in HRI systems
which typically have to operate in real-world noisy environments,
dealing with utterances pertaining to complex, open-ended domains.

In this paper we present an approach to using context in priming
ASR. By priming we mean, focusing the domain of words / word se-
quences ASR can expect next, so as to improve recognition. This ap-
proach has been implemented, and integrated into a cognitive archi-
tecture for a mobile robot [10, 14]. Evaluation results on a test suite
1 DFKI GmbH, Saarbrücken, Germany, email: {pierre.lison} {gj}@dfki.de

with recordings of ”free speech” in the application domain show a
statistically significant decrease in word-error rate (WER) of the im-
plemented system, over a commercial baseline system.

We follow [9] and use context information (in the form of con-
textual constraints) to update the statistical language model used in
ASR. We define a context-sensitive language model which exploits
information about salient objects in the visual scene and linguistic
expressions in the dialogue history to prime recognition. A salience
model integrating both visual and linguistic salience [12] is used to
dynamically compute lexical activations, which are incorporated into
the language model at runtime.

The structure of the paper is as follows. We first situate our ap-
proach against the background of situated dialogue and ASR, and
introduce the software architecture in which our system has been in-
tegrated. We then describe the salience model, and explain how it is
utilised within the language model used for ASR. We finally present
the evaluation of our approach, followed by conclusions.

Figure 1. Example interaction

2 Background
The combinatorial nature of language provides virtually unlimited
ways in which we can communicate meaning. This, of course, raises
the question of how precisely an utterance should then be understood
as it is being heard. Empirical studies have investigated what infor-
mation humans use when comprehending spoken utterances. An im-
portant observation is that interpretation in context plays a crucial
role in the comprehension of utterance as it unfolds [13]. During ut-
terance comprehension, humans combine linguistic information with
scene understanding and ”world knowledge.”

Several approaches in processing situated dialogue for HRI have
made similar observations [19, 20, 21, 4, 14]: A robot’s understand-
ing can be improved by relating utterances to the situated context.
This first of all presumes the robot is able to relate language and the
world around it. [22] present a comprehensive overview of existing
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Abstract. The paper presents an implemented model for prim-
ing speech recognition, using contextual information about salient
entities. The underlying hypothesis is that, in human-robot interac-
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ety of service-oriented tasks. This has led to an increasing interest in
developing dialogue systems for robots [28, 15, 23]. A fundamental
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should be able to understand what is being said, and how that relates
to the physical situation [20, 25, 26, 11].

The relation between language and experience is often character-
ized as being bi-directional (cf. [14]). That is, language influences
how to perceive the environment – and vice versa, the physical situ-
ation provides a context against which to interpret language. In this
paper, we focus on how information from the dialogue- and situated
context can help guiding, and improving, automatic speech recog-
nition (ASR) in human-robot interaction (HRI). Spoken dialogue is
one of the most natural means of communication for humans. De-
spite significant technological advances, however, ASR remains for
most tasks at least an order of magnitude worse than that of human
listeners [17]. This particularly holds for using ASR in HRI systems
which typically have to operate in real-world noisy environments,
dealing with utterances pertaining to complex, open-ended domains.

In this paper we present an approach to using context in priming
ASR. By priming we mean, focusing the domain of words / word se-
quences ASR can expect next, so as to improve recognition. This ap-
proach has been implemented, and integrated into a cognitive archi-
tecture for a mobile robot [10, 14]. Evaluation results on a test suite
1 DFKI GmbH, Saarbrücken, Germany, email: {pierre.lison} {gj}@dfki.de

with recordings of ”free speech” in the application domain show a
statistically significant decrease in word-error rate (WER) of the im-
plemented system, over a commercial baseline system.

We follow [9] and use context information (in the form of con-
textual constraints) to update the statistical language model used in
ASR. We define a context-sensitive language model which exploits
information about salient objects in the visual scene and linguistic
expressions in the dialogue history to prime recognition. A salience
model integrating both visual and linguistic salience [12] is used to
dynamically compute lexical activations, which are incorporated into
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2 Background
The combinatorial nature of language provides virtually unlimited
ways in which we can communicate meaning. This, of course, raises
the question of how precisely an utterance should then be understood
as it is being heard. Empirical studies have investigated what infor-
mation humans use when comprehending spoken utterances. An im-
portant observation is that interpretation in context plays a crucial
role in the comprehension of utterance as it unfolds [13]. During ut-
terance comprehension, humans combine linguistic information with
scene understanding and ”world knowledge.”

Several approaches in processing situated dialogue for HRI have
made similar observations [19, 20, 21, 4, 14]: A robot’s understand-
ing can be improved by relating utterances to the situated context.
This first of all presumes the robot is able to relate language and the
world around it. [22] present a comprehensive overview of existing

Efficient Parsing of Spoken Inputs for Human-Robot Interaction

Pierre Lison and Geert-Jan M. Kruijff

Abstract— The use of deep parsers in spoken dialogue sys-
tems is usually subject to strong performance requirements.
This is particularly the case in human-robot interaction, where
the computing resources are limited and must be shared by
many components in parallel. A real-time dialogue system must
be capable of responding quickly to any given utterance, even in
the presence of noisy, ambiguous or distorted input. The parser
must therefore ensure that the number of analyses remains
bounded at every processing step.

The paper presents a practical approach to addressing this
issue in the context of deep parsers designed for spoken dia-
logue. The approach is based on a word lattice parser combined
with a statistical model for parse selection. Each word lattice
is parsed incrementally, word by word, and a discriminative
model is applied at each incremental step to prune the set of
resulting partial analyses. The model incorporates a wide range
of linguistic and contextual features and can be trained with
a simple perceptron. The approach is fully implemented as
part of a spoken dialogue system for human-robot interaction.
Evaluation results on a Wizard-of-Oz test suite demonstrate
significant improvements in parsing time.

I. INTRODUCTION

Most dialogue systems developed nowadays for human-
robot interaction are based on crude processing methods
such as keyword spotting or heuristic rules. These methods
are undoubtedly useful for well-structured tasks definable
by a set of slot-value pairs, but do not extend very well
to more complex interactions, because they are insensitive
to the syntactic and semantic structure of the utterance. To
capture these linguistic relations, we need to build fine-
grained grammars of natural language, as well as parsers
operating on these grammars. Yet, the development of robust
and efficient parsers for spoken dialogue is hindered by
several major difficulties which need to be addressed.

The first difficulty is the pervasiveness of speech recogni-
tion errors. Automatic speech recognition is a highly error-
prone task, and parsers designed to process spoken input
must therefore be able to accomodate the various recognition
errors that may arise. This problem is particularly acute for
robots operating in real-world environments and dealing with
utterances pertaining to complex, open-ended domains.

The second issue is the relaxed grammaticality of spo-
ken language. Dialogue utterances are often incomplete,
fragmentary or ungrammatical, and may contain numer-
ous disfluencies like fillers (err, uh, mm), repetitions, self-
corrections, etc. This is natural behaviour in human-human

This work was supported by the EU FP7 ICT Integrated Project “CogX”
(FP7-ICT- 215181).

Pierre Lison and Geert-Jan M. Kruijff are with the German Research
Centre for Artificial Intelligence (DFKI GmbH), Language Technology Lab,
Saarbrücken, Germany {pierre.lison,gj} @ dfki.de

interaction [1] and can also be observed in several domain-
specific corpora for HRI [2]. Spoken dialogue parsers should
therefore be made robust to such ill-formed utterances.

Finally, the vast majority of spoken dialogue systems are
designed to operate in real-time. This has two important
consequences. First, the parser should not wait for the
utterance to be completed to start processing it – instead, the
set of possible semantic interpretations should be gradually
built and extended as the utterance unfolds. Second, each
processing step should operate under strict time constraints.
The main obstacle here is the high level of ambiguity in nat-
ural language, which can lead to a combinatorial explosion
in the number of possible readings.

The remainder of this paper is devoted to addressing this
last issue, building on an integrated approach to situated
spoken dialogue processing previously outlined in [3], [4].
The approach we present here is similar to [5], with some
notable differences concerning the parser (our parser being
specifically tailored for robust spoken dialogue processing),
and the features included in the discriminative model.

An overview of the paper is as follows. We first describe
in Section II the cognitive architecture in which our system
has been integrated. We then discuss the approach in detail in
Section III. Finally, we present in Section IV the quantitative
evaluations on a WOZ test suite, and conclude.

II. ARCHITECTURE

The approach we present in this paper is fully implemented
and integrated into a cognitive architecture for autonomous
robots. A recent description of the architecture is provided
in [6], [7]. It is capable of building up visuo-spatial models
of a dynamic local scene, and continuously plan and execute
manipulation actions on objects within that scene. The robot
can discuss objects and their material- and spatial properties
for the purpose of visual learning and manipulation tasks.
Figure 1 illustrates the architecture schema for the commu-
nication subsystem, limited to the comprehension side.

Fig. 1. Architecture schema of the communication subsystem.
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reality, and on (salient) information 

Subjective nature of meaning

Robots and humans perceive reality 
differently ~ subjectively

No “objective truth” but alignment of 
subjective truths

Changes the nature of “shared beliefs” 
and “common ground” 

Proof-based judgments & alignment

UAV Mission Spc: 
Robot-Ego-centric

UAV Pilot: 
Robot-Exo-centric

UGV Mission Spc: 
Robot-Ego-Surround

UGV Operator: 
Robot-Ego-Front
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Abstract The paper views the issue of “symbol grounding”
from the viewpoint of the construction of meaning between
humans and robots, in the context of a collaborative activ-
ity. This concerns a core aspect of the formation of com-
mon ground: The construction of meaning between actors
as a conceptual representation which is believed to be mutu-
ally understood as referring to a particular aspect of reality.
The problem in this construction is that experience is inher-
ently subjective—and more specifically, humans and robots
experience and understand reality fundamentally differently.
There is an inherent asymmetry between the actors involved.
The paper focuses on how this asymmetry can be reflected
logically, and particularly in the underlying model theory.
The point is to make it possible for a robot to reason ex-
plicitly both about such asymmetry in understanding, con-
sider possibilities for alignment to deal with it, and estab-
lish (from its viewpoint) a level of intersubjective or mutual
understanding. Key to the approach taken in the paper is
to consider conceptual representations to be formulas over
propositions which are based in proofs, as reasoned expla-
nations of experience. This shifts the focus from a notion of
“truth” to a notion of judgment—judgments which can be
subjectively right and still intersubjectively wrong (faultless
disagreement), and which can evolve over time (updates, re-
vision). The result is an approach which accommodates both
asymmetric agency and social sentience, modelling sym-
bol grounding in human-robot interaction as social, situated
construction over time.

G.-J.M. Kruijff (!)
Talking Robots@the Language Technology Lab, DFKI GmbH,
Saarbrücken, Germany
e-mail: gj@dfki.de

Keywords Human-robot interaction · Multi-agent
collaboration · Situation awareness · Common ground

1 Introduction

Symbol grounding [32] can be understood as covering a
wide range of problems, all regarding the construction of
“symbols” or conceptual representations, for understand-
ing experience. For any actor, this starts in forming an un-
derstanding of one’s own, subjective experience. But then,
when it comes to collaborative activity between actors, we
face an additional problem. A “common ground” or level
of mutual understanding of reality needs to be created, to
collaborate successfully [12, 13]. From the viewpoint of
symbol grounding, an individual actor needs to project how
another might experience reality, and how that resulting
(projected) understanding could be aligned to its own—to
then come to a level of intersubjective (aligned) understand-
ing [30, 53].

This holds for human-robot interaction just as much as
it does for human-human interaction. Humans and robots
also need to form a level of common ground to success-
fully collaborate, and communicate [35, 36, 43, 65]. With-
out common ground, communication and collaboration typ-
ically break down. It becomes difficult for humans to under-
stand why a robot does (or does not) behave the way it does
(lack of “transparency” [67] or “apparency”), thus degrad-
ing human trust in the system. The kind of situations this can
lead to is illustrated e.g. by the loss of a Quince robot during
the disaster response at the Fukushima nuclear power plant
[29].

What makes the case of human-robot interaction par-
ticularly difficult is that there is a fundamental asymmetry
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Harsh. Dangerous. Stressful.
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How does a robot adapt? 
Act as a team member?
help, assist people? 
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The future

Adaptation & alignment

Adaptation to individual dynamics (cognitive load, 
situation awareness, stress) and social dynamics 
(delegation, coordination)

Adaptation over long-term interaction to support 
team growth

Alignment between multiple actors in dynamic 
social contexts

Real-life teams

Develop systems that really help people

Transparency in team action & interaction 

Trust between human- and robot team members

Growth in HR teams through long-term interaction
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Thanks / dedication

...

... for making things work, for finishing papers by sunrise, for being jointly eaten alive by mosquitoes while re-installing the system, for wacking away in 
subterranean “lab” dungeons till we’re done, for coming up with bad ideas and telling me mine are even worse, for doing things nobody thought or even 
hoped we would be able to do, for always going that little extra 150% “for the team,” for understanding that there is a need for cookies sometimes (or for 
running), for simply being mad at times, .... “here’s to the crazy ones ... WHO DO.” Thank you. 
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